How to integrate Cloudinary MCP with OpenAI Agents SDK

Framework Integration Gradient
Cloudinary Logo
open-ai-agents-sdk Logo
divider

Introduction

This guide walks you through connecting Cloudinary to the OpenAI Agents SDK using the Composio tool router. By the end, you'll have a working Cloudinary agent that can create a new folder for event photos, delete derived assets with ids [123,456], set up upload preset with watermarking, remove unused metadata field 'old_tag' through natural language commands.

This guide will help you understand how to give your OpenAI Agents SDK agent real control over a Cloudinary account through Composio's Cloudinary MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get and set up your OpenAI and Composio API keys
  • Install the necessary dependencies
  • Initialize Composio and create a Tool Router session for Cloudinary
  • Configure an AI agent that can use Cloudinary as a tool
  • Run a live chat session where you can ask the agent to perform Cloudinary operations

What is open-ai-agents-sdk?

The OpenAI Agents SDK is a lightweight framework for building AI agents that can use tools and maintain conversation state. It provides a simple interface for creating agents with hosted MCP tool support.

Key features include:

  • Hosted MCP Tools: Connect to external services through hosted MCP endpoints
  • SQLite Sessions: Persist conversation history across interactions
  • Simple API: Clean interface with Agent, Runner, and tool configuration
  • Streaming Support: Real-time response streaming for interactive applications

What is the Cloudinary MCP server, and what's possible with it?

The Cloudinary MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Cloudinary account. It provides structured and secure access to your digital asset management system, so your agent can perform actions like organizing folders, creating metadata fields, managing upload presets, and handling asset deletion on your behalf.

  • Automated folder and asset organization: Easily instruct your agent to create new asset folders or remove empty ones, keeping your Cloudinary library tidy and structured.
  • Metadata management: Let your agent create custom metadata fields or delete obsolete ones, extending and refining your asset tagging and search capabilities.
  • Preset and upload mapping creation: Have your agent set up upload presets with specific options or define dynamic folder mappings, automating consistent upload processes across your assets.
  • Resource and derived asset cleanup: Direct your agent to permanently delete assets by ID or remove unnecessary derived resources, ensuring your storage stays efficient and clutter-free.
  • Datasource entry management: Ask your agent to inactivate or delete specific datasource entries from metadata fields, keeping your metadata schema accurate and up to date.

Supported Tools & Triggers

Tools
Create FolderTool to create a new asset folder.
Create Metadata FieldTool to create a new metadata field definition.
Create TriggerTool to create a new webhook trigger for a specified event type.
Create Upload MappingTool to create a new upload mapping folder and url template.
Create Upload PresetTool to create a new upload preset.
Delete Derived ResourcesTool to delete derived assets.
Delete Metadata Field Datasource EntriesTool to delete datasource entries for a specified metadata field.
Delete FolderTool to delete an empty asset folder.
Delete Metadata FieldTool to delete a metadata field by external id.
Delete Resources by Asset IDTool to delete resources by asset ids.
Delete Resources by TagsTool to delete cloudinary assets by tag.
Delete TriggerTool to delete a trigger (webhook notification).
Get Adaptive Streaming ProfilesTool to list adaptive streaming profiles.
Get product environment config detailsTool to get product environment config details.
Get Metadata Field By IDTool to get a single metadata field definition by external id.
Get Resource by Asset IDGet resource by asset id
Get Resource by Public IDTool to get details of a single resource by public id.
Get Resources by Asset FolderTool to list assets stored directly in a specified folder.
Get Resources by ContextTool to retrieve assets with a specified contextual metadata key/value.
Get Resources in ModerationTool to retrieve assets in a moderation queue by status.
Get Root FoldersTool to list all root folders in the product environment.
Get Streaming Profile DetailsTool to get details of a single streaming profile by name.
Get Resource TagsTool to list all tags used for a specified resource type.
Get TransformationsTool to list all transformations (named and unnamed).
List Webhook TriggersTool to list all webhook triggers for event types in your environment.
Get Upload Mapping DetailsTool to retrieve details of a single upload mapping by folder.
Get Upload MappingsTool to list all upload mappings by folder.
Get UsageTool to get product environment usage details.
Order Metadata Field DatasourceTool to update ordering of a metadata field datasource.
Ping Cloudinary ServersTool to ping cloudinary servers.
Restore Metadata Field Datasource EntriesTool to restore previously deleted datasource entries for a metadata field.
Search FoldersTool to search asset folders with filtering, sorting, and pagination.
Update FolderTool to rename or move an existing asset folder.
Update Metadata FieldTool to update a metadata field definition by external id.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Composio API Key and OpenAI API Key
  • Primary know-how of OpenAI Agents SDK
  • A live Cloudinary project
  • Some knowledge of Python or Typescript

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key

Install dependencies

pip install composio_openai_agents openai-agents python-dotenv

Install the Composio SDK and the OpenAI Agents SDK.

Set up environment variables

bash
OPENAI_API_KEY=sk-...your-api-key
COMPOSIO_API_KEY=your-api-key
USER_ID=composio_user@gmail.com

Create a .env file and add your OpenAI and Composio API keys.

Import dependencies

import asyncio
import os
from dotenv import load_dotenv

from composio import Composio
from composio_openai_agents import OpenAIAgentsProvider
from agents import Agent, Runner, HostedMCPTool, SQLiteSession
What's happening:
  • You're importing all necessary libraries.
  • The Composio and OpenAIAgentsProvider classes are imported to connect your OpenAI agent to Composio tools like Cloudinary.

Set up the Composio instance

load_dotenv()

api_key = os.getenv("COMPOSIO_API_KEY")
user_id = os.getenv("USER_ID")

if not api_key:
    raise RuntimeError("COMPOSIO_API_KEY is not set. Create a .env file with COMPOSIO_API_KEY=your_key")

# Initialize Composio
composio = Composio(api_key=api_key, provider=OpenAIAgentsProvider())
What's happening:
  • load_dotenv() loads your .env file so OPENAI_API_KEY and COMPOSIO_API_KEY are available as environment variables.
  • Creating a Composio instance using the API Key and OpenAIAgentsProvider class.

Create a Tool Router session

# Create a Cloudinary Tool Router session
session = composio.create(
    user_id=user_id,
    toolkits=["cloudinary"]
)

mcp_url = session.mcp.url

What is happening:

  • You give the Tool Router the user id and the toolkits you want available. Here, it is only cloudinary.
  • The router checks the user's Cloudinary connection and prepares the MCP endpoint.
  • The returned session.mcp.url is the MCP URL that your agent will use to access Cloudinary.
  • This approach keeps things lightweight and lets the agent request Cloudinary tools only when needed during the conversation.

Configure the agent

# Configure agent with MCP tool
agent = Agent(
    name="Assistant",
    model="gpt-5",
    instructions=(
        "You are a helpful assistant that can access Cloudinary. "
        "Help users perform Cloudinary operations through natural language."
    ),
    tools=[
        HostedMCPTool(
            tool_config={
                "type": "mcp",
                "server_label": "tool_router",
                "server_url": mcp_url,
                "headers": {"x-api-key": api_key},
                "require_approval": "never",
            }
        )
    ],
)
What's happening:
  • We're creating an Agent instance with a name, model (gpt-5), and clear instructions about its purpose.
  • The agent's instructions tell it that it can access Cloudinary and help with queries, inserts, updates, authentication, and fetching database information.
  • The tools array includes a HostedMCPTool that connects to the MCP server URL we created earlier.
  • The headers dict includes the Composio API key for secure authentication with the MCP server.
  • require_approval: 'never' means the agent can execute Cloudinary operations without asking for permission each time, making interactions smoother.

Start chat loop and handle conversation

print("\nComposio Tool Router session created.")

chat_session = SQLiteSession("conversation_openai_toolrouter")

print("\nChat started. Type your requests below.")
print("Commands: 'exit', 'quit', or 'q' to end\n")

async def main():
    try:
        result = await Runner.run(
            agent,
            "What can you help me with?",
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")
    except Exception as e:
        print(f"Error: {e}\n")

    while True:
        user_input = input("You: ").strip()
        if user_input.lower() in {"exit", "quit", "q"}:
            print("Goodbye!")
            break

        result = await Runner.run(
            agent,
            user_input,
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")

asyncio.run(main())
What's happening:
  • The program prints a session URL that you visit to authorize Cloudinary.
  • After authorization, the chat begins.
  • Each message you type is processed by the agent using Runner.run().
  • The responses are printed to the console, and conversations are saved locally using SQLite.
  • Typing exit, quit, or q cleanly ends the chat.

Complete Code

Here's the complete code to get you started with Cloudinary and open-ai-agents-sdk:

import asyncio
import os
from dotenv import load_dotenv

from composio import Composio
from composio_openai_agents import OpenAIAgentsProvider
from agents import Agent, Runner, HostedMCPTool, SQLiteSession

load_dotenv()

api_key = os.getenv("COMPOSIO_API_KEY")
user_id = os.getenv("USER_ID")

if not api_key:
    raise RuntimeError("COMPOSIO_API_KEY is not set. Create a .env file with COMPOSIO_API_KEY=your_key")

# Initialize Composio
composio = Composio(api_key=api_key, provider=OpenAIAgentsProvider())

# Create Tool Router session
session = composio.create(
    user_id=user_id,
    toolkits=["cloudinary"]
)
mcp_url = session.mcp.url

# Configure agent with MCP tool
agent = Agent(
    name="Assistant",
    model="gpt-5",
    instructions=(
        "You are a helpful assistant that can access Cloudinary. "
        "Help users perform Cloudinary operations through natural language."
    ),
    tools=[
        HostedMCPTool(
            tool_config={
                "type": "mcp",
                "server_label": "tool_router",
                "server_url": mcp_url,
                "headers": {"x-api-key": api_key},
                "require_approval": "never",
            }
        )
    ],
)

print("\nComposio Tool Router session created.")

chat_session = SQLiteSession("conversation_openai_toolrouter")

print("\nChat started. Type your requests below.")
print("Commands: 'exit', 'quit', or 'q' to end\n")

async def main():
    try:
        result = await Runner.run(
            agent,
            "What can you help me with?",
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")
    except Exception as e:
        print(f"Error: {e}\n")

    while True:
        user_input = input("You: ").strip()
        if user_input.lower() in {"exit", "quit", "q"}:
            print("Goodbye!")
            break

        result = await Runner.run(
            agent,
            user_input,
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")

asyncio.run(main())

Conclusion

This was a starter code for integrating Cloudinary MCP with OpenAI Agents SDK to build a functional AI agent that can interact with Cloudinary.

Key features:

  • Hosted MCP tool integration through Composio's Tool Router
  • SQLite session persistence for conversation history
  • Simple async chat loop for interactive testing
You can extend this by adding more toolkits, implementing custom business logic, or building a web interface around the agent.

How to build Cloudinary MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Cloudinary MCP?

With a standalone Cloudinary MCP server, the agents and LLMs can only access a fixed set of Cloudinary tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Cloudinary and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with OpenAI Agents SDK?

Yes, you can. OpenAI Agents SDK fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Cloudinary tools.

Can I manage the permissions and scopes for Cloudinary while using Tool Router?

Yes, absolutely. You can configure which Cloudinary scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Cloudinary data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.