How to integrate Cloudinary MCP with Mastra AI

Framework Integration Gradient
Cloudinary Logo
Mastra AI Logo
divider

Introduction

This guide walks you through connecting Cloudinary to Mastra AI using the Composio tool router. By the end, you'll have a working Cloudinary agent that can create a new folder for event photos, delete derived assets with ids [123,456], set up upload preset with watermarking, remove unused metadata field 'old_tag' through natural language commands.

This guide will help you understand how to give your Mastra AI agent real control over a Cloudinary account through Composio's Cloudinary MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Set up your environment so Mastra, OpenAI, and Composio work together
  • Create a Tool Router session in Composio that exposes Cloudinary tools
  • Connect Mastra's MCP client to the Composio generated MCP URL
  • Fetch Cloudinary tool definitions and attach them as a toolset
  • Build a Mastra agent that can reason, call tools, and return structured results
  • Run an interactive CLI where you can chat with your Cloudinary agent

What is Mastra AI?

Mastra AI is a TypeScript framework for building AI agents with tool support. It provides a clean API for creating agents that can use external services through MCP.

Key features include:

  • MCP Client: Built-in support for Model Context Protocol servers
  • Toolsets: Organize tools into logical groups
  • Step Callbacks: Monitor and debug agent execution
  • OpenAI Integration: Works with OpenAI models via @ai-sdk/openai

What is the Cloudinary MCP server, and what's possible with it?

The Cloudinary MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Cloudinary account. It provides structured and secure access to your digital asset management system, so your agent can perform actions like organizing folders, creating metadata fields, managing upload presets, and handling asset deletion on your behalf.

  • Automated folder and asset organization: Easily instruct your agent to create new asset folders or remove empty ones, keeping your Cloudinary library tidy and structured.
  • Metadata management: Let your agent create custom metadata fields or delete obsolete ones, extending and refining your asset tagging and search capabilities.
  • Preset and upload mapping creation: Have your agent set up upload presets with specific options or define dynamic folder mappings, automating consistent upload processes across your assets.
  • Resource and derived asset cleanup: Direct your agent to permanently delete assets by ID or remove unnecessary derived resources, ensuring your storage stays efficient and clutter-free.
  • Datasource entry management: Ask your agent to inactivate or delete specific datasource entries from metadata fields, keeping your metadata schema accurate and up to date.

Supported Tools & Triggers

Tools
Create FolderTool to create a new asset folder.
Create Metadata FieldTool to create a new metadata field definition.
Create TriggerTool to create a new webhook trigger for a specified event type.
Create Upload MappingTool to create a new upload mapping folder and url template.
Create Upload PresetTool to create a new upload preset.
Delete Derived ResourcesTool to delete derived assets.
Delete Metadata Field Datasource EntriesTool to delete datasource entries for a specified metadata field.
Delete FolderTool to delete an empty asset folder.
Delete Metadata FieldTool to delete a metadata field by external id.
Delete Resources by Asset IDTool to delete resources by asset ids.
Delete Resources by TagsTool to delete cloudinary assets by tag.
Delete TriggerTool to delete a trigger (webhook notification).
Get Adaptive Streaming ProfilesTool to list adaptive streaming profiles.
Get product environment config detailsTool to get product environment config details.
Get Metadata Field By IDTool to get a single metadata field definition by external id.
Get Resource by Asset IDGet resource by asset id
Get Resource by Public IDTool to get details of a single resource by public id.
Get Resources by Asset FolderTool to list assets stored directly in a specified folder.
Get Resources by ContextTool to retrieve assets with a specified contextual metadata key/value.
Get Resources in ModerationTool to retrieve assets in a moderation queue by status.
Get Root FoldersTool to list all root folders in the product environment.
Get Streaming Profile DetailsTool to get details of a single streaming profile by name.
Get Resource TagsTool to list all tags used for a specified resource type.
Get TransformationsTool to list all transformations (named and unnamed).
List Webhook TriggersTool to list all webhook triggers for event types in your environment.
Get Upload Mapping DetailsTool to retrieve details of a single upload mapping by folder.
Get Upload MappingsTool to list all upload mappings by folder.
Get UsageTool to get product environment usage details.
Order Metadata Field DatasourceTool to update ordering of a metadata field datasource.
Ping Cloudinary ServersTool to ping cloudinary servers.
Restore Metadata Field Datasource EntriesTool to restore previously deleted datasource entries for a metadata field.
Search FoldersTool to search asset folders with filtering, sorting, and pagination.
Update FolderTool to rename or move an existing asset folder.
Update Metadata FieldTool to update a metadata field definition by external id.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Node.js 18 or higher
  • A Composio account with an active API key
  • An OpenAI API key
  • Basic familiarity with TypeScript

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key.
  • You need credits or a connected billing setup to use the models.
  • Store the key somewhere safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Go to Settings and copy your API key.
  • This key lets your Mastra agent talk to Composio and reach Cloudinary through MCP.

Install dependencies

bash
npm install @composio/core @mastra/core @mastra/mcp @ai-sdk/openai dotenv

Install the required packages.

What's happening:

  • @composio/core is the Composio SDK for creating MCP sessions
  • @mastra/core provides the Agent class
  • @mastra/mcp is Mastra's MCP client
  • @ai-sdk/openai is the model wrapper for OpenAI
  • dotenv loads environment variables from .env

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
COMPOSIO_USER_ID=your_user_id_here
OPENAI_API_KEY=your_openai_api_key_here

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates your requests to Composio
  • COMPOSIO_USER_ID tells Composio which user this session belongs to
  • OPENAI_API_KEY lets the Mastra agent call OpenAI models

Import libraries and validate environment

typescript
import "dotenv/config";
import { openai } from "@ai-sdk/openai";
import { Agent } from "@mastra/core/agent";
import { MCPClient } from "@mastra/mcp";
import { Composio } from "@composio/core";
import * as readline from "readline";

import type { AiMessageType } from "@mastra/core/agent";

const openaiAPIKey = process.env.OPENAI_API_KEY;
const composioAPIKey = process.env.COMPOSIO_API_KEY;
const composioUserID = process.env.COMPOSIO_USER_ID;

if (!openaiAPIKey) throw new Error("OPENAI_API_KEY is not set");
if (!composioAPIKey) throw new Error("COMPOSIO_API_KEY is not set");
if (!composioUserID) throw new Error("COMPOSIO_USER_ID is not set");

const composio = new Composio({
  apiKey: composioAPIKey as string,
});
What's happening:
  • dotenv/config auto loads your .env so process.env.* is available
  • openai gives you a Mastra compatible model wrapper
  • Agent is the Mastra agent that will call tools and produce answers
  • MCPClient connects Mastra to your Composio MCP server
  • Composio is used to create a Tool Router session

Create a Tool Router session for Cloudinary

typescript
async function main() {
  const session = await composio.create(
    composioUserID as string,
    {
      toolkits: ["cloudinary"],
    },
  );

  const composioMCPUrl = session.mcp.url;
  console.log("Cloudinary MCP URL:", composioMCPUrl);
What's happening:
  • create spins up a short-lived MCP HTTP endpoint for this user
  • The toolkits array contains "cloudinary" for Cloudinary access
  • session.mcp.url is the MCP URL that Mastra's MCPClient will connect to

Configure Mastra MCP client and fetch tools

typescript
const mcpClient = new MCPClient({
    id: composioUserID as string,
    servers: {
      nasdaq: {
        url: new URL(composioMCPUrl),
        requestInit: {
          headers: session.mcp.headers,
        },
      },
    },
    timeout: 30_000,
  });

console.log("Fetching MCP tools from Composio...");
const composioTools = await mcpClient.getTools();
console.log("Number of tools:", Object.keys(composioTools).length);
What's happening:
  • MCPClient takes an id for this client and a list of MCP servers
  • The headers property includes the x-api-key for authentication
  • getTools fetches the tool definitions exposed by the Cloudinary toolkit

Create the Mastra agent

typescript
const agent = new Agent({
    name: "cloudinary-mastra-agent",
    instructions: "You are an AI agent with Cloudinary tools via Composio.",
    model: "openai/gpt-5",
  });
What's happening:
  • Agent is the core Mastra agent
  • name is just an identifier for logging and debugging
  • instructions guide the agent to use tools instead of only answering in natural language
  • model uses openai("gpt-5") to configure the underlying LLM

Set up interactive chat interface

typescript
let messages: AiMessageType[] = [];

console.log("Chat started! Type 'exit' or 'quit' to end.\n");

const rl = readline.createInterface({
  input: process.stdin,
  output: process.stdout,
  prompt: "> ",
});

rl.prompt();

rl.on("line", async (userInput: string) => {
  const trimmedInput = userInput.trim();

  if (["exit", "quit", "bye"].includes(trimmedInput.toLowerCase())) {
    console.log("\nGoodbye!");
    rl.close();
    process.exit(0);
  }

  if (!trimmedInput) {
    rl.prompt();
    return;
  }

  messages.push({
    id: crypto.randomUUID(),
    role: "user",
    content: trimmedInput,
  });

  console.log("\nAgent is thinking...\n");

  try {
    const response = await agent.generate(messages, {
      toolsets: {
        cloudinary: composioTools,
      },
      maxSteps: 8,
    });

    const { text } = response;

    if (text && text.trim().length > 0) {
      console.log(`Agent: ${text}\n`);
        messages.push({
          id: crypto.randomUUID(),
          role: "assistant",
          content: text,
        });
      }
    } catch (error) {
      console.error("\nError:", error);
    }

    rl.prompt();
  });

  rl.on("close", async () => {
    console.log("\nSession ended.");
    await mcpClient.disconnect();
    process.exit(0);
  });
}

main().catch((err) => {
  console.error("Fatal error:", err);
  process.exit(1);
});
What's happening:
  • messages keeps the full conversation history in Mastra's expected format
  • agent.generate runs the agent with conversation history and Cloudinary toolsets
  • maxSteps limits how many tool calls the agent can take in a single run
  • onStepFinish is a hook that prints intermediate steps for debugging

Complete Code

Here's the complete code to get you started with Cloudinary and Mastra AI:

typescript
import "dotenv/config";
import { openai } from "@ai-sdk/openai";
import { Agent } from "@mastra/core/agent";
import { MCPClient } from "@mastra/mcp";
import { Composio } from "@composio/core";
import * as readline from "readline";

import type { AiMessageType } from "@mastra/core/agent";

const openaiAPIKey = process.env.OPENAI_API_KEY;
const composioAPIKey = process.env.COMPOSIO_API_KEY;
const composioUserID = process.env.COMPOSIO_USER_ID;

if (!openaiAPIKey) throw new Error("OPENAI_API_KEY is not set");
if (!composioAPIKey) throw new Error("COMPOSIO_API_KEY is not set");
if (!composioUserID) throw new Error("COMPOSIO_USER_ID is not set");

const composio = new Composio({ apiKey: composioAPIKey as string });

async function main() {
  const session = await composio.create(composioUserID as string, {
    toolkits: ["cloudinary"],
  });

  const composioMCPUrl = session.mcp.url;

  const mcpClient = new MCPClient({
    id: composioUserID as string,
    servers: {
      cloudinary: {
        url: new URL(composioMCPUrl),
        requestInit: {
          headers: session.mcp.headers,
        },
      },
    },
    timeout: 30_000,
  });

  const composioTools = await mcpClient.getTools();

  const agent = new Agent({
    name: "cloudinary-mastra-agent",
    instructions: "You are an AI agent with Cloudinary tools via Composio.",
    model: "openai/gpt-5",
  });

  let messages: AiMessageType[] = [];

  const rl = readline.createInterface({
    input: process.stdin,
    output: process.stdout,
    prompt: "> ",
  });

  rl.prompt();

  rl.on("line", async (input: string) => {
    const trimmed = input.trim();
    if (["exit", "quit"].includes(trimmed.toLowerCase())) {
      rl.close();
      return;
    }

    messages.push({ id: crypto.randomUUID(), role: "user", content: trimmed });

    const { text } = await agent.generate(messages, {
      toolsets: { cloudinary: composioTools },
      maxSteps: 8,
    });

    if (text) {
      console.log(`Agent: ${text}\n`);
      messages.push({ id: crypto.randomUUID(), role: "assistant", content: text });
    }

    rl.prompt();
  });

  rl.on("close", async () => {
    await mcpClient.disconnect();
    process.exit(0);
  });
}

main();

Conclusion

You've built a Mastra AI agent that can interact with Cloudinary through Composio's Tool Router. You can extend this further by:
  • Adding other toolkits like Gmail, Slack, or GitHub
  • Building a web-based chat interface around this agent
  • Using multiple MCP endpoints to enable cross-app workflows

How to build Cloudinary MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Cloudinary MCP?

With a standalone Cloudinary MCP server, the agents and LLMs can only access a fixed set of Cloudinary tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Cloudinary and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with Mastra AI?

Yes, you can. Mastra AI fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Cloudinary tools.

Can I manage the permissions and scopes for Cloudinary while using Tool Router?

Yes, absolutely. You can configure which Cloudinary scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Cloudinary data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.