How to integrate Cloudinary MCP with Google ADK

Framework Integration Gradient
Cloudinary Logo
Google ADK Logo
divider

Introduction

This guide walks you through connecting Cloudinary to Google ADK using the Composio tool router. By the end, you'll have a working Cloudinary agent that can create a new folder for event photos, delete derived assets with ids [123,456], set up upload preset with watermarking, remove unused metadata field 'old_tag' through natural language commands.

This guide will help you understand how to give your Google ADK agent real control over a Cloudinary account through Composio's Cloudinary MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get a Cloudinary account set up and connected to Composio
  • Install the Google ADK and Composio packages
  • Create a Composio Tool Router session for Cloudinary
  • Build an agent that connects to Cloudinary through MCP
  • Interact with Cloudinary using natural language

What is Google ADK?

Google ADK (Agents Development Kit) is Google's framework for building AI agents powered by Gemini models. It provides tools for creating agents that can use external services through the Model Context Protocol.

Key features include:

  • Gemini Integration: Native support for Google's Gemini models
  • MCP Toolset: Built-in support for Model Context Protocol tools
  • Streamable HTTP: Connect to external services through streamable HTTP
  • CLI and Web UI: Run agents via command line or web interface

What is the Cloudinary MCP server, and what's possible with it?

The Cloudinary MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Cloudinary account. It provides structured and secure access to your digital asset management system, so your agent can perform actions like organizing folders, creating metadata fields, managing upload presets, and handling asset deletion on your behalf.

  • Automated folder and asset organization: Easily instruct your agent to create new asset folders or remove empty ones, keeping your Cloudinary library tidy and structured.
  • Metadata management: Let your agent create custom metadata fields or delete obsolete ones, extending and refining your asset tagging and search capabilities.
  • Preset and upload mapping creation: Have your agent set up upload presets with specific options or define dynamic folder mappings, automating consistent upload processes across your assets.
  • Resource and derived asset cleanup: Direct your agent to permanently delete assets by ID or remove unnecessary derived resources, ensuring your storage stays efficient and clutter-free.
  • Datasource entry management: Ask your agent to inactivate or delete specific datasource entries from metadata fields, keeping your metadata schema accurate and up to date.

Supported Tools & Triggers

Tools
Create FolderTool to create a new asset folder.
Create Metadata FieldTool to create a new metadata field definition.
Create TriggerTool to create a new webhook trigger for a specified event type.
Create Upload MappingTool to create a new upload mapping folder and url template.
Create Upload PresetTool to create a new upload preset.
Delete Derived ResourcesTool to delete derived assets.
Delete Metadata Field Datasource EntriesTool to delete datasource entries for a specified metadata field.
Delete FolderTool to delete an empty asset folder.
Delete Metadata FieldTool to delete a metadata field by external id.
Delete Resources by Asset IDTool to delete resources by asset ids.
Delete Resources by TagsTool to delete cloudinary assets by tag.
Delete TriggerTool to delete a trigger (webhook notification).
Get Adaptive Streaming ProfilesTool to list adaptive streaming profiles.
Get product environment config detailsTool to get product environment config details.
Get Metadata Field By IDTool to get a single metadata field definition by external id.
Get Resource by Asset IDGet resource by asset id
Get Resource by Public IDTool to get details of a single resource by public id.
Get Resources by Asset FolderTool to list assets stored directly in a specified folder.
Get Resources by ContextTool to retrieve assets with a specified contextual metadata key/value.
Get Resources in ModerationTool to retrieve assets in a moderation queue by status.
Get Root FoldersTool to list all root folders in the product environment.
Get Streaming Profile DetailsTool to get details of a single streaming profile by name.
Get Resource TagsTool to list all tags used for a specified resource type.
Get TransformationsTool to list all transformations (named and unnamed).
List Webhook TriggersTool to list all webhook triggers for event types in your environment.
Get Upload Mapping DetailsTool to retrieve details of a single upload mapping by folder.
Get Upload MappingsTool to list all upload mappings by folder.
Get UsageTool to get product environment usage details.
Order Metadata Field DatasourceTool to update ordering of a metadata field datasource.
Ping Cloudinary ServersTool to ping cloudinary servers.
Restore Metadata Field Datasource EntriesTool to restore previously deleted datasource entries for a metadata field.
Search FoldersTool to search asset folders with filtering, sorting, and pagination.
Update FolderTool to rename or move an existing asset folder.
Update Metadata FieldTool to update a metadata field definition by external id.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • A Google API key for Gemini models
  • A Composio account and API key
  • Python 3.9 or later installed
  • Basic familiarity with Python

Getting API Keys for Google and Composio

Google API Key
  • Go to Google AI Studio and create an API key.
  • Copy the key and keep it safe. You will put this in GOOGLE_API_KEY.
Composio API Key and User ID
  • Log in to the Composio dashboard.
  • Go to Settings → API Keys and copy your Composio API key. Use this for COMPOSIO_API_KEY.
  • Decide on a stable user identifier to scope sessions, often your email or a user ID. Use this for COMPOSIO_USER_ID.

Install dependencies

bash
pip install google-adk composio python-dotenv

Inside your virtual environment, install the required packages.

What's happening:

  • google-adk is Google's Agents Development Kit
  • composio connects your agent to Cloudinary via MCP
  • python-dotenv loads environment variables

Set up ADK project

bash
adk create my_agent

Set up a new Google ADK project.

What's happening:

  • This creates an agent folder with a root agent file and .env file

Set environment variables

bash
GOOGLE_API_KEY=your-google-api-key
COMPOSIO_API_KEY=your-composio-api-key
COMPOSIO_USER_ID=your-user-id-or-email

Save all your credentials in the .env file.

What's happening:

  • GOOGLE_API_KEY authenticates with Google's Gemini models
  • COMPOSIO_API_KEY authenticates with Composio
  • COMPOSIO_USER_ID identifies the user for session management

Import modules and validate environment

python
import os
import warnings

from composio import Composio
from dotenv import load_dotenv
from google.adk.agents.llm_agent import Agent
from google.adk.tools.mcp_tool.mcp_session_manager import StreamableHTTPConnectionParams
from google.adk.tools.mcp_tool.mcp_toolset import McpToolset

load_dotenv()

warnings.filterwarnings("ignore", message=".*BaseAuthenticatedTool.*")

GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
COMPOSIO_API_KEY = os.getenv("COMPOSIO_API_KEY")
COMPOSIO_USER_ID = os.getenv("COMPOSIO_USER_ID")

if not GOOGLE_API_KEY:
    raise ValueError("GOOGLE_API_KEY is not set in the environment.")
if not COMPOSIO_API_KEY:
    raise ValueError("COMPOSIO_API_KEY is not set in the environment.")
if not COMPOSIO_USER_ID:
    raise ValueError("COMPOSIO_USER_ID is not set in the environment.")
What's happening:
  • os reads environment variables
  • Composio is the main Composio SDK client
  • GoogleProvider declares that you are using Google ADK as the agent runtime
  • Agent is the Google ADK LLM agent class
  • McpToolset lets the ADK agent call MCP tools over HTTP

Create Composio client and Tool Router session

python
composio_client = Composio(api_key=COMPOSIO_API_KEY)

composio_session = composio_client.create(
    user_id=COMPOSIO_USER_ID,
    toolkits=["cloudinary"],
)

COMPOSIO_MCP_URL = composio_session.mcp.url,
print(f"Composio MCP URL: {COMPOSIO_MCP_URL}")
What's happening:
  • Authenticates to Composio with your API key
  • Declares Google ADK as the provider
  • Spins up a short-lived MCP endpoint for your user and selected toolkit
  • Stores the MCP HTTP URL for the ADK MCP integration

Set up the McpToolset and create the Agent

python
composio_toolset = McpToolset(
    connection_params=StreamableHTTPConnectionParams(
        url=COMPOSIO_MCP_URL,
        headers={"x-api-key": COMPOSIO_API_KEY}
    )
)

root_agent = Agent(
    model="gemini-2.5-flash",
    name="composio_agent",
    description="An agent that uses Composio tools to perform actions.",
    instruction=(
        "You are a helpful assistant connected to Composio. "
        "You have the following tools available: "
        "COMPOSIO_SEARCH_TOOLS, COMPOSIO_MULTI_EXECUTE_TOOL, "
        "COMPOSIO_MANAGE_CONNECTIONS, COMPOSIO_REMOTE_BASH_TOOL, COMPOSIO_REMOTE_WORKBENCH. "
        "Use these tools to help users with Cloudinary operations."
    ),
    tools=[composio_toolset],
)

print("\nAgent setup complete. You can now run this agent directly ;)")
What's happening:
  • Connects the ADK agent to the Composio MCP endpoint through McpToolset
  • Uses Gemini as the model powering the agent
  • Lists exact tool names in instruction to reduce misnamed tool calls

Run the agent

bash
# Run in CLI mode
adk run my_agent

# Or run in web UI mode
adk web

Execute the agent from the project root. The web command opens a web portal where you can chat with the agent.

What's happening:

  • adk run runs the agent in CLI mode
  • adk web . opens a web UI for interactive testing

Complete Code

Here's the complete code to get you started with Cloudinary and Google ADK:

python
import os
import warnings

from composio import Composio
from composio_google import GoogleProvider
from dotenv import load_dotenv
from google.adk.agents.llm_agent import Agent
from google.adk.tools.mcp_tool.mcp_session_manager import StreamableHTTPConnectionParams
from google.adk.tools.mcp_tool.mcp_toolset import McpToolset

load_dotenv()
warnings.filterwarnings("ignore", message=".*BaseAuthenticatedTool.*")

GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
COMPOSIO_API_KEY = os.getenv("COMPOSIO_API_KEY")
COMPOSIO_USER_ID = os.getenv("COMPOSIO_USER_ID")

if not GOOGLE_API_KEY:
    raise ValueError("GOOGLE_API_KEY is not set in the environment.")
if not COMPOSIO_API_KEY:
    raise ValueError("COMPOSIO_API_KEY is not set in the environment.")
if not COMPOSIO_USER_ID:
    raise ValueError("COMPOSIO_USER_ID is not set in the environment.")

composio_client = Composio(api_key=COMPOSIO_API_KEY, provider=GoogleProvider())

composio_session = composio_client.create(
    user_id=COMPOSIO_USER_ID,
    toolkits=["cloudinary"],
)

COMPOSIO_MCP_URL = composio_session.mcp.url


composio_toolset = McpToolset(
    connection_params=StreamableHTTPConnectionParams(
        url=COMPOSIO_MCP_URL,
        headers={"x-api-key": COMPOSIO_API_KEY}
    )
)

root_agent = Agent(
    model="gemini-2.5-flash",
    name="composio_agent",
    description="An agent that uses Composio tools to perform actions.",
    instruction=(
        "You are a helpful assistant connected to Composio. "
        "You have the following tools available: "
        "COMPOSIO_SEARCH_TOOLS, COMPOSIO_MULTI_EXECUTE_TOOL, "
        "COMPOSIO_MANAGE_CONNECTIONS, COMPOSIO_REMOTE_BASH_TOOL, COMPOSIO_REMOTE_WORKBENCH. "
        "Use these tools to help users with Cloudinary operations."
    ),  
    tools=[composio_toolset],
)

print("\nAgent setup complete. You can now run this agent directly ;)")

Conclusion

You've successfully integrated Cloudinary with the Google ADK through Composio's MCP Tool Router. Your agent can now interact with Cloudinary using natural language commands.

Key takeaways:

  • The Tool Router approach dynamically routes requests to the appropriate Cloudinary tools
  • Environment variables keep your credentials secure and separate from code
  • Clear agent instructions reduce tool calling errors
  • The ADK web UI provides an interactive interface for testing and development

You can extend this setup by adding more toolkits to the toolkits array in your session configuration.

How to build Cloudinary MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Cloudinary MCP?

With a standalone Cloudinary MCP server, the agents and LLMs can only access a fixed set of Cloudinary tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Cloudinary and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with Google ADK?

Yes, you can. Google ADK fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Cloudinary tools.

Can I manage the permissions and scopes for Cloudinary while using Tool Router?

Yes, absolutely. You can configure which Cloudinary scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Cloudinary data and credentials are handled as safely as possible.

Used by agents from

Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.