How to integrate Svix MCP with OpenAI Agents SDK

Framework Integration Gradient
Svix Logo
open-ai-agents-sdk Logo
divider

Introduction

This guide walks you through connecting Svix to the OpenAI Agents SDK using the Composio tool router. By the end, you'll have a working Svix agent that can list all webhook endpoints for app x, create a new webhook endpoint for payments, update application rate limit to 1000/min, get delivery attempts for message id 12345 through natural language commands.

This guide will help you understand how to give your OpenAI Agents SDK agent real control over a Svix account through Composio's Svix MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get and set up your OpenAI and Composio API keys
  • Install the necessary dependencies
  • Initialize Composio and create a Tool Router session for Svix
  • Configure an AI agent that can use Svix as a tool
  • Run a live chat session where you can ask the agent to perform Svix operations

What is open-ai-agents-sdk?

The OpenAI Agents SDK is a lightweight framework for building AI agents that can use tools and maintain conversation state. It provides a simple interface for creating agents with hosted MCP tool support.

Key features include:

  • Hosted MCP Tools: Connect to external services through hosted MCP endpoints
  • SQLite Sessions: Persist conversation history across interactions
  • Simple API: Clean interface with Agent, Runner, and tool configuration
  • Streaming Support: Real-time response streaming for interactive applications

What is the Svix MCP server, and what's possible with it?

The Svix MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Svix account. It provides structured and secure access to your webhooks infrastructure, so your agent can perform actions like managing applications, configuring endpoints, sending webhooks, and monitoring delivery attempts on your behalf.

  • Application management and automation: Ask your agent to create, update, list, or delete Svix applications, making it easy to manage webhook-enabled projects programmatically.
  • Endpoint configuration: Have your agent register, retrieve, or remove webhook endpoints for your applications, ensuring your events get delivered to the right places.
  • Webhook delivery tracking: Let your agent fetch detailed information about message delivery attempts, helping you monitor reliability and debug failed webhooks with ease.
  • Comprehensive application insights: Retrieve metadata and details for any Svix application, so your agent can surface key info or audit your webhook ecosystem.
  • Automated cleanup and maintenance: Direct your agent to delete outdated applications or endpoints, streamlining your webhook management and reducing clutter.

Supported Tools & Triggers

Tools
Create ApplicationTool to create a new svix application.
Delete Svix ApplicationTool to delete an application by its id.
Get ApplicationTool to retrieve details of a specific svix application by its id.
List ApplicationsTool to list all applications.
Update Svix ApplicationTool to update an existing svix application by id.
Get Attempt DetailsTool to retrieve details of a specific message attempt.
List Message AttemptsTool to list all delivery attempts for a specific message.
Create EndpointTool to create a new svix webhook endpoint.
Delete EndpointTool to delete an endpoint.
Get EndpointTool to retrieve details of a specific endpoint.
List EndpointsTool to list all endpoints for a specific application.
Patch EndpointTool to partially update an endpoint’s configuration.
Patch Endpoint HeadersTool to partially update headers for a specific endpoint.
Recover Failed WebhooksTool to recover messages that failed to send to an endpoint.
Replay Missing WebhooksTool to replay missing webhooks for a specific endpoint.
Get Endpoint SecretTool to retrieve the secret for a specific endpoint.
Rotate Endpoint SecretTool to rotate the signing secret key for an endpoint.
Send Example MessageTool to send a test message for a specific event type to an endpoint.
Get Endpoint StatsTool to retrieve basic statistics for a specific endpoint.
Get Endpoint TransformationTool to retrieve transformation settings for a specific endpoint.
Set Endpoint TransformationTool to set or update transformation settings for an endpoint.
Update EndpointTool to update an existing endpoint.
Update Endpoint HeadersTool to completely replace headers for a specific endpoint.
Create Event TypeTool to create a new event type or unarchive an existing one.
Delete Event TypeTool to delete an event type.
Get Event TypeTool to retrieve details of a specific event type by its id.
List Event TypesTool to retrieve a list of all event types.
Update Event TypeTool to update an existing event type by id.
Create IntegrationTool to create a new integration for a specific application.
Delete IntegrationTool to delete an integration.
Get IntegrationTool to retrieve details of a specific integration.
List IntegrationsTool to list all integrations for a specific application.
Update IntegrationTool to update an existing integration by id.
Create MessageTool to create a new message for a specific application in svix.
Get MessageTool to retrieve details of a specific message by its id.
List MessagesTool to list all messages for a specific application.
Create SourceTool to create a source for message ingestion.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Composio API Key and OpenAI API Key
  • Primary know-how of OpenAI Agents SDK
  • A live Svix project
  • Some knowledge of Python or Typescript

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key

Install dependencies

pip install composio_openai_agents openai-agents python-dotenv

Install the Composio SDK and the OpenAI Agents SDK.

Set up environment variables

bash
OPENAI_API_KEY=sk-...your-api-key
COMPOSIO_API_KEY=your-api-key
USER_ID=composio_user@gmail.com

Create a .env file and add your OpenAI and Composio API keys.

Import dependencies

import asyncio
import os
from dotenv import load_dotenv

from composio import Composio
from composio_openai_agents import OpenAIAgentsProvider
from agents import Agent, Runner, HostedMCPTool, SQLiteSession
What's happening:
  • You're importing all necessary libraries.
  • The Composio and OpenAIAgentsProvider classes are imported to connect your OpenAI agent to Composio tools like Svix.

Set up the Composio instance

load_dotenv()

api_key = os.getenv("COMPOSIO_API_KEY")
user_id = os.getenv("USER_ID")

if not api_key:
    raise RuntimeError("COMPOSIO_API_KEY is not set. Create a .env file with COMPOSIO_API_KEY=your_key")

# Initialize Composio
composio = Composio(api_key=api_key, provider=OpenAIAgentsProvider())
What's happening:
  • load_dotenv() loads your .env file so OPENAI_API_KEY and COMPOSIO_API_KEY are available as environment variables.
  • Creating a Composio instance using the API Key and OpenAIAgentsProvider class.

Create a Tool Router session

# Create a Svix Tool Router session
session = composio.create(
    user_id=user_id,
    toolkits=["svix"]
)

mcp_url = session.mcp.url

What is happening:

  • You give the Tool Router the user id and the toolkits you want available. Here, it is only svix.
  • The router checks the user's Svix connection and prepares the MCP endpoint.
  • The returned session.mcp.url is the MCP URL that your agent will use to access Svix.
  • This approach keeps things lightweight and lets the agent request Svix tools only when needed during the conversation.

Configure the agent

# Configure agent with MCP tool
agent = Agent(
    name="Assistant",
    model="gpt-5",
    instructions=(
        "You are a helpful assistant that can access Svix. "
        "Help users perform Svix operations through natural language."
    ),
    tools=[
        HostedMCPTool(
            tool_config={
                "type": "mcp",
                "server_label": "tool_router",
                "server_url": mcp_url,
                "headers": {"x-api-key": api_key},
                "require_approval": "never",
            }
        )
    ],
)
What's happening:
  • We're creating an Agent instance with a name, model (gpt-5), and clear instructions about its purpose.
  • The agent's instructions tell it that it can access Svix and help with queries, inserts, updates, authentication, and fetching database information.
  • The tools array includes a HostedMCPTool that connects to the MCP server URL we created earlier.
  • The headers dict includes the Composio API key for secure authentication with the MCP server.
  • require_approval: 'never' means the agent can execute Svix operations without asking for permission each time, making interactions smoother.

Start chat loop and handle conversation

print("\nComposio Tool Router session created.")

chat_session = SQLiteSession("conversation_openai_toolrouter")

print("\nChat started. Type your requests below.")
print("Commands: 'exit', 'quit', or 'q' to end\n")

async def main():
    try:
        result = await Runner.run(
            agent,
            "What can you help me with?",
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")
    except Exception as e:
        print(f"Error: {e}\n")

    while True:
        user_input = input("You: ").strip()
        if user_input.lower() in {"exit", "quit", "q"}:
            print("Goodbye!")
            break

        result = await Runner.run(
            agent,
            user_input,
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")

asyncio.run(main())
What's happening:
  • The program prints a session URL that you visit to authorize Svix.
  • After authorization, the chat begins.
  • Each message you type is processed by the agent using Runner.run().
  • The responses are printed to the console, and conversations are saved locally using SQLite.
  • Typing exit, quit, or q cleanly ends the chat.

Complete Code

Here's the complete code to get you started with Svix and open-ai-agents-sdk:

import asyncio
import os
from dotenv import load_dotenv

from composio import Composio
from composio_openai_agents import OpenAIAgentsProvider
from agents import Agent, Runner, HostedMCPTool, SQLiteSession

load_dotenv()

api_key = os.getenv("COMPOSIO_API_KEY")
user_id = os.getenv("USER_ID")

if not api_key:
    raise RuntimeError("COMPOSIO_API_KEY is not set. Create a .env file with COMPOSIO_API_KEY=your_key")

# Initialize Composio
composio = Composio(api_key=api_key, provider=OpenAIAgentsProvider())

# Create Tool Router session
session = composio.create(
    user_id=user_id,
    toolkits=["svix"]
)
mcp_url = session.mcp.url

# Configure agent with MCP tool
agent = Agent(
    name="Assistant",
    model="gpt-5",
    instructions=(
        "You are a helpful assistant that can access Svix. "
        "Help users perform Svix operations through natural language."
    ),
    tools=[
        HostedMCPTool(
            tool_config={
                "type": "mcp",
                "server_label": "tool_router",
                "server_url": mcp_url,
                "headers": {"x-api-key": api_key},
                "require_approval": "never",
            }
        )
    ],
)

print("\nComposio Tool Router session created.")

chat_session = SQLiteSession("conversation_openai_toolrouter")

print("\nChat started. Type your requests below.")
print("Commands: 'exit', 'quit', or 'q' to end\n")

async def main():
    try:
        result = await Runner.run(
            agent,
            "What can you help me with?",
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")
    except Exception as e:
        print(f"Error: {e}\n")

    while True:
        user_input = input("You: ").strip()
        if user_input.lower() in {"exit", "quit", "q"}:
            print("Goodbye!")
            break

        result = await Runner.run(
            agent,
            user_input,
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")

asyncio.run(main())

Conclusion

This was a starter code for integrating Svix MCP with OpenAI Agents SDK to build a functional AI agent that can interact with Svix.

Key features:

  • Hosted MCP tool integration through Composio's Tool Router
  • SQLite session persistence for conversation history
  • Simple async chat loop for interactive testing
You can extend this by adding more toolkits, implementing custom business logic, or building a web interface around the agent.

How to build Svix MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Svix MCP?

With a standalone Svix MCP server, the agents and LLMs can only access a fixed set of Svix tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Svix and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with OpenAI Agents SDK?

Yes, you can. OpenAI Agents SDK fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Svix tools.

Can I manage the permissions and scopes for Svix while using Tool Router?

Yes, absolutely. You can configure which Svix scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Svix data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.