How to integrate Ignisign MCP with LlamaIndex

Framework Integration Gradient
Ignisign Logo
LlamaIndex Logo
divider

Introduction

This guide walks you through connecting Ignisign to LlamaIndex using the Composio tool router. By the end, you'll have a working Ignisign agent that can start a new signature request for a contract, add a new signer to this application, delete a completed document by its id, create a webhook to track signature events through natural language commands.

This guide will help you understand how to give your LlamaIndex agent real control over a Ignisign account through Composio's Ignisign MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Set your OpenAI and Composio API keys
  • Install LlamaIndex and Composio packages
  • Create a Composio Tool Router session for Ignisign
  • Connect LlamaIndex to the Ignisign MCP server
  • Build a Ignisign-powered agent using LlamaIndex
  • Interact with Ignisign through natural language

What is LlamaIndex?

LlamaIndex is a data framework for building LLM applications. It provides tools for connecting LLMs to external data sources and services through agents and tools.

Key features include:

  • ReAct Agent: Reasoning and acting pattern for tool-using agents
  • MCP Tools: Native support for Model Context Protocol
  • Context Management: Maintain conversation context across interactions
  • Async Support: Built for async/await patterns

What is the Ignisign MCP server, and what's possible with it?

The Ignisign MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Ignisign account. It provides structured and secure access to your electronic signature workflows, so your agent can perform actions like sending signature requests, managing documents, onboarding signers, and handling signature operations on your behalf.

  • Automated signature request management: Let your agent create, cancel, or delete signature requests, streamlining the entire e-signature process from start to finish.
  • Document initialization and deletion: Have the agent initialize new documents for signing or permanently delete documents when they're no longer needed.
  • Signer onboarding and removal: Effortlessly add new signers to your application environment or remove existing ones as your workflows change.
  • Webhook endpoint management: Allow your agent to create or delete webhook endpoints, enabling real-time notifications and integrations for signature events.
  • Application context retrieval: Fetch global application settings and environment configurations so your agent always works with up-to-date information.

Supported Tools & Triggers

Tools
Ignisign API AuthenticationTool to authenticate an application over Ignisign API and retrieve a JWT.
Cancel Signature RequestTool to cancel a signature request.
Initialize DocumentTool to initialize a document for a signature request.
Create SignerTool to create a new signer.
Create Webhook EndpointTool to create a new webhook endpoint for an application.
Delete DocumentTool to delete a specific document by its ID.
Delete Ignisign Signature RequestTool to delete a signature request.
Delete SignerTool to delete a signer.
Delete Webhook EndpointTool to delete a specific webhook endpoint.
Get application contextTool to retrieve the global context of an application.
Get Document InformationTool to retrieve document metadata by ID.
Get Missing Signer InputsTool to determine missing inputs needed for a signer in a specific signature profile.
Get Signature Request DetailsTool to retrieve detailed information for a specific signature request.
Get Signature Request DocumentTool to retrieve the document associated with a specific signature request.
Get Signature RequestsTool to retrieve a paginated list of signature requests for an application.
Get Signature Request StatusTool to retrieve the current status of a specific signature request.
Get Signed DocumentTool to download the signed document (signature proof) for a signature request.
Get Signer Creation ConstraintsTool to retrieve input constraints required to create a signer for a specific signature profile.
Get Signer Input ConstraintsTool to get signer input constraints.
Get Signer InputsTool to retrieve inputs provided by a signer for a signature request.
Get Signer ProfileTool to retrieve a signer profile.
Get Signer ProfilesTool to retrieve signer profiles.
Get Webhook DetailsTool to retrieve details of a specific webhook endpoint.
Get WebhooksTool to list all webhook endpoints configured for an application environment.
Close Ignisign Signature RequestTool to close an active signature request.
Update SignerTool to update details of an existing signer.
Initialize Ignisign Signature RequestTool to initialize a new signature request.
List DocumentsTool to retrieve documents linked to a signature request.
Provide Document Content Data JSONTool to provide JSON content for a document.
Provide Document Content FileTool to provide file content for a document.
Provide Document Content Private FileTool to provide private content for a document via its SHA-256 hash.
Publish Signature RequestTool to publish a draft signature request.
Search SignersTool to search for signers within an application.
Update Document InformationTool to update document metadata.
Update Signature RequestTool to partially update a signature request in DRAFT state.
Update Webhook EndpointTool to update an existing webhook endpoint.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before you begin, make sure you have:
  • Python 3.8/Node 16 or higher installed
  • A Composio account with the API key
  • An OpenAI API key
  • A Ignisign account and project
  • Basic familiarity with async Python/Typescript

Getting API Keys for OpenAI, Composio, and Ignisign

OpenAI API key (OPENAI_API_KEY)
  • Go to the OpenAI dashboard
  • Create an API key if you don't have one
  • Assign it to OPENAI_API_KEY in .env
Composio API key and user ID
  • Log into the Composio dashboard
  • Copy your API key from Settings
    • Use this as COMPOSIO_API_KEY
  • Pick a stable user identifier (email or ID)
    • Use this as COMPOSIO_USER_ID

Installing dependencies

pip install composio-llamaindex llama-index llama-index-llms-openai llama-index-tools-mcp python-dotenv

Create a new Python project and install the necessary dependencies:

  • composio-llamaindex: Composio's LlamaIndex integration
  • llama-index: Core LlamaIndex framework
  • llama-index-llms-openai: OpenAI LLM integration
  • llama-index-tools-mcp: MCP client for LlamaIndex
  • python-dotenv: Environment variable management

Set environment variables

bash
OPENAI_API_KEY=your-openai-api-key
COMPOSIO_API_KEY=your-composio-api-key
COMPOSIO_USER_ID=your-user-id

Create a .env file in your project root:

These credentials will be used to:

  • Authenticate with OpenAI's GPT-5 model
  • Connect to Composio's Tool Router
  • Identify your Composio user session for Ignisign access

Import modules

import asyncio
import os
import dotenv

from composio import Composio
from composio_llamaindex import LlamaIndexProvider
from llama_index.core.agent.workflow import ReActAgent
from llama_index.core.workflow import Context
from llama_index.llms.openai import OpenAI
from llama_index.tools.mcp import BasicMCPClient, McpToolSpec

dotenv.load_dotenv()

Create a new file called ignisign_llamaindex_agent.py and import the required modules:

Key imports:

  • asyncio: For async/await support
  • Composio: Main client for Composio services
  • LlamaIndexProvider: Adapts Composio tools for LlamaIndex
  • ReActAgent: LlamaIndex's reasoning and action agent
  • BasicMCPClient: Connects to MCP endpoints
  • McpToolSpec: Converts MCP tools to LlamaIndex format

Load environment variables and initialize Composio

OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
COMPOSIO_API_KEY = os.getenv("COMPOSIO_API_KEY")
COMPOSIO_USER_ID = os.getenv("COMPOSIO_USER_ID")

if not OPENAI_API_KEY:
    raise ValueError("OPENAI_API_KEY is not set in the environment")
if not COMPOSIO_API_KEY:
    raise ValueError("COMPOSIO_API_KEY is not set in the environment")
if not COMPOSIO_USER_ID:
    raise ValueError("COMPOSIO_USER_ID is not set in the environment")

What's happening:

This ensures missing credentials cause early, clear errors before the agent attempts to initialise.

Create a Tool Router session and build the agent function

async def build_agent() -> ReActAgent:
    composio_client = Composio(
        api_key=COMPOSIO_API_KEY,
        provider=LlamaIndexProvider(),
    )

    session = composio_client.create(
        user_id=COMPOSIO_USER_ID,
        toolkits=["ignisign"],
    )

    mcp_url = session.mcp.url
    print(f"Composio MCP URL: {mcp_url}")

    mcp_client = BasicMCPClient(mcp_url, headers={"x-api-key": COMPOSIO_API_KEY})
    mcp_tool_spec = McpToolSpec(client=mcp_client)
    tools = await mcp_tool_spec.to_tool_list_async()

    llm = OpenAI(model="gpt-5")

    description = "An agent that uses Composio Tool Router MCP tools to perform Ignisign actions."
    system_prompt = """
    You are a helpful assistant connected to Composio Tool Router.
    Use the available tools to answer user queries and perform Ignisign actions.
    """
    return ReActAgent(tools=tools, llm=llm, description=description, system_prompt=system_prompt, verbose=True)

What's happening here:

  • We create a Composio client using your API key and configure it with the LlamaIndex provider
  • We then create a tool router MCP session for your user, specifying the toolkits we want to use (in this case, ignisign)
  • The session returns an MCP HTTP endpoint URL that acts as a gateway to all your configured tools
  • LlamaIndex will connect to this endpoint to dynamically discover and use the available Ignisign tools.
  • The MCP tools are mapped to LlamaIndex-compatible tools and plug them into the Agent.

Create an interactive chat loop

async def chat_loop(agent: ReActAgent) -> None:
    ctx = Context(agent)
    print("Type 'quit', 'exit', or Ctrl+C to stop.")

    while True:
        try:
            user_input = input("\nYou: ").strip()
        except (KeyboardInterrupt, EOFError):
            print("\nBye!")
            break

        if not user_input or user_input.lower() in {"quit", "exit"}:
            print("Bye!")
            break

        try:
            print("Agent: ", end="", flush=True)
            handler = agent.run(user_input, ctx=ctx)

            async for event in handler.stream_events():
                # Stream token-by-token from LLM responses
                if hasattr(event, "delta") and event.delta:
                    print(event.delta, end="", flush=True)
                # Show tool calls as they happen
                elif hasattr(event, "tool_name"):
                    print(f"\n[Using tool: {event.tool_name}]", flush=True)

            # Get final response
            response = await handler
            print()  # Newline after streaming
        except KeyboardInterrupt:
            print("\n[Interrupted]")
            continue
        except Exception as e:
            print(f"\nError: {e}")

What's happening here:

  • We're creating a direct terminal interface to chat with your Ignisign database
  • The LLM's responses are streamed to the CLI for faster interaction.
  • The agent uses context to maintain conversation history
  • You can type 'quit' or 'exit' to stop the chat loop gracefully
  • Agent responses and any errors are displayed in a clear, readable format

Define the main entry point

async def main() -> None:
    agent = await build_agent()
    await chat_loop(agent)

if __name__ == "__main__":
    # Handle Ctrl+C gracefully
    signal.signal(signal.SIGINT, lambda s, f: (print("\nBye!"), exit(0)))
    try:
        asyncio.run(main())
    except KeyboardInterrupt:
        print("\nBye!")

What's happening here:

  • We're orchestrating the entire application flow
  • The agent gets built with proper error handling
  • Then we kick off the interactive chat loop so you can start talking to Ignisign

Run the agent

npx ts-node llamaindex-agent.ts

When prompted, authenticate and authorise your agent with Ignisign, then start asking questions.

Complete Code

Here's the complete code to get you started with Ignisign and LlamaIndex:

import asyncio
import os
import signal
import dotenv

from composio import Composio
from composio_llamaindex import LlamaIndexProvider
from llama_index.core.agent.workflow import ReActAgent
from llama_index.core.workflow import Context
from llama_index.llms.openai import OpenAI
from llama_index.tools.mcp import BasicMCPClient, McpToolSpec

dotenv.load_dotenv()

OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
COMPOSIO_API_KEY = os.getenv("COMPOSIO_API_KEY")
COMPOSIO_USER_ID = os.getenv("COMPOSIO_USER_ID")

if not OPENAI_API_KEY:
    raise ValueError("OPENAI_API_KEY is not set")
if not COMPOSIO_API_KEY:
    raise ValueError("COMPOSIO_API_KEY is not set")
if not COMPOSIO_USER_ID:
    raise ValueError("COMPOSIO_USER_ID is not set")

async def build_agent() -> ReActAgent:
    composio_client = Composio(
        api_key=COMPOSIO_API_KEY,
        provider=LlamaIndexProvider(),
    )

    session = composio_client.create(
        user_id=COMPOSIO_USER_ID,
        toolkits=["ignisign"],
    )

    mcp_url = session.mcp.url
    print(f"Composio MCP URL: {mcp_url}")

    mcp_client = BasicMCPClient(mcp_url, headers={"x-api-key": COMPOSIO_API_KEY})
    mcp_tool_spec = McpToolSpec(client=mcp_client)
    tools = await mcp_tool_spec.to_tool_list_async()

    llm = OpenAI(model="gpt-5")
    description = "An agent that uses Composio Tool Router MCP tools to perform Ignisign actions."
    system_prompt = """
    You are a helpful assistant connected to Composio Tool Router.
    Use the available tools to answer user queries and perform Ignisign actions.
    """
    return ReActAgent(
        tools=tools,
        llm=llm,
        description=description,
        system_prompt=system_prompt,
        verbose=True,
    );

async def chat_loop(agent: ReActAgent) -> None:
    ctx = Context(agent)
    print("Type 'quit', 'exit', or Ctrl+C to stop.")

    while True:
        try:
            user_input = input("\nYou: ").strip()
        except (KeyboardInterrupt, EOFError):
            print("\nBye!")
            break

        if not user_input or user_input.lower() in {"quit", "exit"}:
            print("Bye!")
            break

        try:
            print("Agent: ", end="", flush=True)
            handler = agent.run(user_input, ctx=ctx)

            async for event in handler.stream_events():
                # Stream token-by-token from LLM responses
                if hasattr(event, "delta") and event.delta:
                    print(event.delta, end="", flush=True)
                # Show tool calls as they happen
                elif hasattr(event, "tool_name"):
                    print(f"\n[Using tool: {event.tool_name}]", flush=True)

            # Get final response
            response = await handler
            print()  # Newline after streaming
        except KeyboardInterrupt:
            print("\n[Interrupted]")
            continue
        except Exception as e:
            print(f"\nError: {e}")

async def main() -> None:
    agent = await build_agent()
    await chat_loop(agent)

if __name__ == "__main__":
    # Handle Ctrl+C gracefully
    signal.signal(signal.SIGINT, lambda s, f: (print("\nBye!"), exit(0)))
    try:
        asyncio.run(main())
    except KeyboardInterrupt:
        print("\nBye!")

Conclusion

You've successfully connected Ignisign to LlamaIndex through Composio's Tool Router MCP layer. Key takeaways:
  • Tool Router dynamically exposes Ignisign tools through an MCP endpoint
  • LlamaIndex's ReActAgent handles reasoning and orchestration; Composio handles integrations
  • The agent becomes more capable without increasing prompt size
  • Async Python provides clean, efficient execution of agent workflows
You can easily extend this to other toolkits like Gmail, Notion, Stripe, GitHub, and more by adding them to the toolkits parameter.

How to build Ignisign MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Ignisign MCP?

With a standalone Ignisign MCP server, the agents and LLMs can only access a fixed set of Ignisign tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Ignisign and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with LlamaIndex?

Yes, you can. LlamaIndex fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Ignisign tools.

Can I manage the permissions and scopes for Ignisign while using Tool Router?

Yes, absolutely. You can configure which Ignisign scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Ignisign data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.