How to integrate Control d MCP with LlamaIndex

Framework Integration Gradient
Control d Logo
LlamaIndex Logo
divider

Introduction

This guide walks you through connecting Control d to LlamaIndex using the Composio tool router. By the end, you'll have a working Control d agent that can list all devices connected to my account, remove a device by its id, show known access ips for my network, delete a custom dns rule from a profile through natural language commands.

This guide will help you understand how to give your LlamaIndex agent real control over a Control d account through Composio's Control d MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Set your OpenAI and Composio API keys
  • Install LlamaIndex and Composio packages
  • Create a Composio Tool Router session for Control d
  • Connect LlamaIndex to the Control d MCP server
  • Build a Control d-powered agent using LlamaIndex
  • Interact with Control d through natural language

What is LlamaIndex?

LlamaIndex is a data framework for building LLM applications. It provides tools for connecting LLMs to external data sources and services through agents and tools.

Key features include:

  • ReAct Agent: Reasoning and acting pattern for tool-using agents
  • MCP Tools: Native support for Model Context Protocol
  • Context Management: Maintain conversation context across interactions
  • Async Support: Built for async/await patterns

What is the Control d MCP server, and what's possible with it?

The Control d MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Control d account. It provides structured and secure access to your DNS filtering and device management environment, so your agent can perform actions like managing devices, enforcing policies, retrieving analytics, and monitoring network access on your behalf.

  • Device inventory management: Easily list all devices on your account or remove specific devices by their identifier for streamlined device control.
  • Profile and rule administration: Direct your agent to delete profiles, custom rules, or schedules—helping you maintain and enforce up-to-date network policies.
  • Network access monitoring: Retrieve a list of known access IPs to keep tabs on which endpoints are connecting to your network infrastructure.
  • Analytics endpoints discovery: Quickly fetch available analytics storage regions and endpoints so you can integrate and analyze DNS traffic data efficiently.
  • Organization details access: Have the agent fetch and present your organization's account details for easy reference and auditing.

Supported Tools & Triggers

Tools
Delete Device by IDTool to delete a Control-D device.
Delete Profile by IDTool to delete a profile.
Delete Profile Rule by HostnameTool to delete a specific custom rule by hostname from a profile.
Delete Profile Rule by Rule IDTool to delete a specific custom rule by its ID within a profile.
Delete Profile Rule in FolderTool to delete a specific custom rule within a folder.
Delete Profile ScheduleTool to delete a specific schedule within a profile.
List Known Access IPsTool to list known IPs associated with the account.
Get Analytics EndpointsTool to list analytics storage regions and their endpoints.
Get DevicesTool to list all devices associated with the account.
Get Organization DetailsTool to view the authenticated organization's details.
Get ProfilesTool to list all profiles associated with the authenticated account.
Get Profile OptionsTool to get all available profile options.
Get Profile by IDTool to retrieve details of a specific profile by its ID.
Get Profile AnalyticsTool to retrieve analytics data for a specific profile.
Get Profile Analytics LogsTool to list analytics log entries for a given profile.
Get Analytics Log EntryTool to retrieve a specific analytics log entry by its ID.
Get Profile Analytics SummaryTool to fetch a summary of analytics data for a given profile.
Get Profile Analytics Top DomainsTool to fetch top domains accessed within a specific profile.
Get Profile Top ServicesTool to fetch top services accessed within a profile.
Get Profile FiltersTool to list native filters associated with a specific profile.
List External Filters for ProfileTool to list third-party filters for a specific profile.
Get Profile FoldersTool to list rule folders (groups) within a profile.
List Custom Rules for ProfileTool to retrieve custom rules associated with a specific profile.
List Custom Rules in FolderTool to retrieve custom rules in a specific folder of a profile.
Get Custom Rule by Rule IDTool to retrieve details of a specific custom rule by its ID.
Get Specific Rule in FolderTool to retrieve a specific rule within a folder by its ID.
Get Profile SchedulesTool to list schedules associated with a specific profile.
Get Profile ScheduleTool to retrieve a specific schedule by its ID within a profile.
Get Profile ServicesTool to list services associated with a specific profile.
Get Service CategoriesTool to list all service categories.
List Services by CategoryTool to list all services within a specific category.
Get UsersTool to retrieve user account data.
Create DeviceTool to create a new device.
Create ProfileTool to create a new blank profile or clone an existing one.
Create Custom Rules for ProfileTool to create custom rules for a profile.
Create Custom Rules in Profile FolderTool to create custom rules within a specific folder for a profile.
Create Profile ScheduleTool to create a new schedule within a specific profile.
Modify DeviceTool to modify an existing device.
Modify OrganizationTool to modify organization settings and limits.
Update Profile by IDTool to modify an existing profile by ID.
Bulk Update Profile FiltersTool to bulk update filters on a specific profile.
Update External Filters for ProfileTool to update external filters for a specific profile.
Modify Profile FilterTool to modify the enabled state of a specific filter on a profile.
Modify Custom Rules for ProfileTool to modify existing custom rule(s) for a profile.
Update Custom Rule by Rule IDTool to update an existing custom rule by its ID.
Move Profile Rule to FolderTool to move a specific custom rule into a different folder.
Update Profile ScheduleTool to update a specific schedule within a profile.
Modify Service for ProfileTool to modify a specific service rule for a profile.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before you begin, make sure you have:
  • Python 3.8/Node 16 or higher installed
  • A Composio account with the API key
  • An OpenAI API key
  • A Control d account and project
  • Basic familiarity with async Python/Typescript

Getting API Keys for OpenAI, Composio, and Control d

OpenAI API key (OPENAI_API_KEY)
  • Go to the OpenAI dashboard
  • Create an API key if you don't have one
  • Assign it to OPENAI_API_KEY in .env
Composio API key and user ID
  • Log into the Composio dashboard
  • Copy your API key from Settings
    • Use this as COMPOSIO_API_KEY
  • Pick a stable user identifier (email or ID)
    • Use this as COMPOSIO_USER_ID

Installing dependencies

pip install composio-llamaindex llama-index llama-index-llms-openai llama-index-tools-mcp python-dotenv

Create a new Python project and install the necessary dependencies:

  • composio-llamaindex: Composio's LlamaIndex integration
  • llama-index: Core LlamaIndex framework
  • llama-index-llms-openai: OpenAI LLM integration
  • llama-index-tools-mcp: MCP client for LlamaIndex
  • python-dotenv: Environment variable management

Set environment variables

bash
OPENAI_API_KEY=your-openai-api-key
COMPOSIO_API_KEY=your-composio-api-key
COMPOSIO_USER_ID=your-user-id

Create a .env file in your project root:

These credentials will be used to:

  • Authenticate with OpenAI's GPT-5 model
  • Connect to Composio's Tool Router
  • Identify your Composio user session for Control d access

Import modules

import asyncio
import os
import dotenv

from composio import Composio
from composio_llamaindex import LlamaIndexProvider
from llama_index.core.agent.workflow import ReActAgent
from llama_index.core.workflow import Context
from llama_index.llms.openai import OpenAI
from llama_index.tools.mcp import BasicMCPClient, McpToolSpec

dotenv.load_dotenv()

Create a new file called control d_llamaindex_agent.py and import the required modules:

Key imports:

  • asyncio: For async/await support
  • Composio: Main client for Composio services
  • LlamaIndexProvider: Adapts Composio tools for LlamaIndex
  • ReActAgent: LlamaIndex's reasoning and action agent
  • BasicMCPClient: Connects to MCP endpoints
  • McpToolSpec: Converts MCP tools to LlamaIndex format

Load environment variables and initialize Composio

OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
COMPOSIO_API_KEY = os.getenv("COMPOSIO_API_KEY")
COMPOSIO_USER_ID = os.getenv("COMPOSIO_USER_ID")

if not OPENAI_API_KEY:
    raise ValueError("OPENAI_API_KEY is not set in the environment")
if not COMPOSIO_API_KEY:
    raise ValueError("COMPOSIO_API_KEY is not set in the environment")
if not COMPOSIO_USER_ID:
    raise ValueError("COMPOSIO_USER_ID is not set in the environment")

What's happening:

This ensures missing credentials cause early, clear errors before the agent attempts to initialise.

Create a Tool Router session and build the agent function

async def build_agent() -> ReActAgent:
    composio_client = Composio(
        api_key=COMPOSIO_API_KEY,
        provider=LlamaIndexProvider(),
    )

    session = composio_client.create(
        user_id=COMPOSIO_USER_ID,
        toolkits=["control_d"],
    )

    mcp_url = session.mcp.url
    print(f"Composio MCP URL: {mcp_url}")

    mcp_client = BasicMCPClient(mcp_url, headers={"x-api-key": COMPOSIO_API_KEY})
    mcp_tool_spec = McpToolSpec(client=mcp_client)
    tools = await mcp_tool_spec.to_tool_list_async()

    llm = OpenAI(model="gpt-5")

    description = "An agent that uses Composio Tool Router MCP tools to perform Control d actions."
    system_prompt = """
    You are a helpful assistant connected to Composio Tool Router.
    Use the available tools to answer user queries and perform Control d actions.
    """
    return ReActAgent(tools=tools, llm=llm, description=description, system_prompt=system_prompt, verbose=True)

What's happening here:

  • We create a Composio client using your API key and configure it with the LlamaIndex provider
  • We then create a tool router MCP session for your user, specifying the toolkits we want to use (in this case, control d)
  • The session returns an MCP HTTP endpoint URL that acts as a gateway to all your configured tools
  • LlamaIndex will connect to this endpoint to dynamically discover and use the available Control d tools.
  • The MCP tools are mapped to LlamaIndex-compatible tools and plug them into the Agent.

Create an interactive chat loop

async def chat_loop(agent: ReActAgent) -> None:
    ctx = Context(agent)
    print("Type 'quit', 'exit', or Ctrl+C to stop.")

    while True:
        try:
            user_input = input("\nYou: ").strip()
        except (KeyboardInterrupt, EOFError):
            print("\nBye!")
            break

        if not user_input or user_input.lower() in {"quit", "exit"}:
            print("Bye!")
            break

        try:
            print("Agent: ", end="", flush=True)
            handler = agent.run(user_input, ctx=ctx)

            async for event in handler.stream_events():
                # Stream token-by-token from LLM responses
                if hasattr(event, "delta") and event.delta:
                    print(event.delta, end="", flush=True)
                # Show tool calls as they happen
                elif hasattr(event, "tool_name"):
                    print(f"\n[Using tool: {event.tool_name}]", flush=True)

            # Get final response
            response = await handler
            print()  # Newline after streaming
        except KeyboardInterrupt:
            print("\n[Interrupted]")
            continue
        except Exception as e:
            print(f"\nError: {e}")

What's happening here:

  • We're creating a direct terminal interface to chat with your Control d database
  • The LLM's responses are streamed to the CLI for faster interaction.
  • The agent uses context to maintain conversation history
  • You can type 'quit' or 'exit' to stop the chat loop gracefully
  • Agent responses and any errors are displayed in a clear, readable format

Define the main entry point

async def main() -> None:
    agent = await build_agent()
    await chat_loop(agent)

if __name__ == "__main__":
    # Handle Ctrl+C gracefully
    signal.signal(signal.SIGINT, lambda s, f: (print("\nBye!"), exit(0)))
    try:
        asyncio.run(main())
    except KeyboardInterrupt:
        print("\nBye!")

What's happening here:

  • We're orchestrating the entire application flow
  • The agent gets built with proper error handling
  • Then we kick off the interactive chat loop so you can start talking to Control d

Run the agent

npx ts-node llamaindex-agent.ts

When prompted, authenticate and authorise your agent with Control d, then start asking questions.

Complete Code

Here's the complete code to get you started with Control d and LlamaIndex:

import asyncio
import os
import signal
import dotenv

from composio import Composio
from composio_llamaindex import LlamaIndexProvider
from llama_index.core.agent.workflow import ReActAgent
from llama_index.core.workflow import Context
from llama_index.llms.openai import OpenAI
from llama_index.tools.mcp import BasicMCPClient, McpToolSpec

dotenv.load_dotenv()

OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
COMPOSIO_API_KEY = os.getenv("COMPOSIO_API_KEY")
COMPOSIO_USER_ID = os.getenv("COMPOSIO_USER_ID")

if not OPENAI_API_KEY:
    raise ValueError("OPENAI_API_KEY is not set")
if not COMPOSIO_API_KEY:
    raise ValueError("COMPOSIO_API_KEY is not set")
if not COMPOSIO_USER_ID:
    raise ValueError("COMPOSIO_USER_ID is not set")

async def build_agent() -> ReActAgent:
    composio_client = Composio(
        api_key=COMPOSIO_API_KEY,
        provider=LlamaIndexProvider(),
    )

    session = composio_client.create(
        user_id=COMPOSIO_USER_ID,
        toolkits=["control_d"],
    )

    mcp_url = session.mcp.url
    print(f"Composio MCP URL: {mcp_url}")

    mcp_client = BasicMCPClient(mcp_url, headers={"x-api-key": COMPOSIO_API_KEY})
    mcp_tool_spec = McpToolSpec(client=mcp_client)
    tools = await mcp_tool_spec.to_tool_list_async()

    llm = OpenAI(model="gpt-5")
    description = "An agent that uses Composio Tool Router MCP tools to perform Control d actions."
    system_prompt = """
    You are a helpful assistant connected to Composio Tool Router.
    Use the available tools to answer user queries and perform Control d actions.
    """
    return ReActAgent(
        tools=tools,
        llm=llm,
        description=description,
        system_prompt=system_prompt,
        verbose=True,
    );

async def chat_loop(agent: ReActAgent) -> None:
    ctx = Context(agent)
    print("Type 'quit', 'exit', or Ctrl+C to stop.")

    while True:
        try:
            user_input = input("\nYou: ").strip()
        except (KeyboardInterrupt, EOFError):
            print("\nBye!")
            break

        if not user_input or user_input.lower() in {"quit", "exit"}:
            print("Bye!")
            break

        try:
            print("Agent: ", end="", flush=True)
            handler = agent.run(user_input, ctx=ctx)

            async for event in handler.stream_events():
                # Stream token-by-token from LLM responses
                if hasattr(event, "delta") and event.delta:
                    print(event.delta, end="", flush=True)
                # Show tool calls as they happen
                elif hasattr(event, "tool_name"):
                    print(f"\n[Using tool: {event.tool_name}]", flush=True)

            # Get final response
            response = await handler
            print()  # Newline after streaming
        except KeyboardInterrupt:
            print("\n[Interrupted]")
            continue
        except Exception as e:
            print(f"\nError: {e}")

async def main() -> None:
    agent = await build_agent()
    await chat_loop(agent)

if __name__ == "__main__":
    # Handle Ctrl+C gracefully
    signal.signal(signal.SIGINT, lambda s, f: (print("\nBye!"), exit(0)))
    try:
        asyncio.run(main())
    except KeyboardInterrupt:
        print("\nBye!")

Conclusion

You've successfully connected Control d to LlamaIndex through Composio's Tool Router MCP layer. Key takeaways:
  • Tool Router dynamically exposes Control d tools through an MCP endpoint
  • LlamaIndex's ReActAgent handles reasoning and orchestration; Composio handles integrations
  • The agent becomes more capable without increasing prompt size
  • Async Python provides clean, efficient execution of agent workflows
You can easily extend this to other toolkits like Gmail, Notion, Stripe, GitHub, and more by adding them to the toolkits parameter.

How to build Control d MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Control d MCP?

With a standalone Control d MCP server, the agents and LLMs can only access a fixed set of Control d tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Control d and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with LlamaIndex?

Yes, you can. LlamaIndex fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Control d tools.

Can I manage the permissions and scopes for Control d while using Tool Router?

Yes, absolutely. You can configure which Control d scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Control d data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.