How to integrate Control d MCP with CrewAI

Framework Integration Gradient
Control d Logo
CrewAI Logo
divider

Introduction

This guide walks you through connecting Control d to CrewAI using the Composio tool router. By the end, you'll have a working Control d agent that can list all devices connected to my account, remove a device by its id, show known access ips for my network, delete a custom dns rule from a profile through natural language commands.

This guide will help you understand how to give your CrewAI agent real control over a Control d account through Composio's Control d MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get a Composio API key and configure your Control d connection
  • Set up CrewAI with an MCP enabled agent
  • Create a Tool Router session or standalone MCP server for Control d
  • Build a conversational loop where your agent can execute Control d operations

What is CrewAI?

CrewAI is a powerful framework for building multi-agent AI systems. It provides primitives for defining agents with specific roles, creating tasks, and orchestrating workflows through crews.

Key features include:

  • Agent Roles: Define specialized agents with specific goals and backstories
  • Task Management: Create tasks with clear descriptions and expected outputs
  • Crew Orchestration: Combine agents and tasks into collaborative workflows
  • MCP Integration: Connect to external tools through Model Context Protocol

What is the Control d MCP server, and what's possible with it?

The Control d MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Control d account. It provides structured and secure access to your DNS filtering and device management environment, so your agent can perform actions like managing devices, enforcing policies, retrieving analytics, and monitoring network access on your behalf.

  • Device inventory management: Easily list all devices on your account or remove specific devices by their identifier for streamlined device control.
  • Profile and rule administration: Direct your agent to delete profiles, custom rules, or schedules—helping you maintain and enforce up-to-date network policies.
  • Network access monitoring: Retrieve a list of known access IPs to keep tabs on which endpoints are connecting to your network infrastructure.
  • Analytics endpoints discovery: Quickly fetch available analytics storage regions and endpoints so you can integrate and analyze DNS traffic data efficiently.
  • Organization details access: Have the agent fetch and present your organization's account details for easy reference and auditing.

Supported Tools & Triggers

Tools
Delete Device by IDTool to delete a Control-D device.
Delete Profile by IDTool to delete a profile.
Delete Profile Rule by HostnameTool to delete a specific custom rule by hostname from a profile.
Delete Profile Rule by Rule IDTool to delete a specific custom rule by its ID within a profile.
Delete Profile Rule in FolderTool to delete a specific custom rule within a folder.
Delete Profile ScheduleTool to delete a specific schedule within a profile.
List Known Access IPsTool to list known IPs associated with the account.
Get Analytics EndpointsTool to list analytics storage regions and their endpoints.
Get DevicesTool to list all devices associated with the account.
Get Organization DetailsTool to view the authenticated organization's details.
Get ProfilesTool to list all profiles associated with the authenticated account.
Get Profile OptionsTool to get all available profile options.
Get Profile by IDTool to retrieve details of a specific profile by its ID.
Get Profile AnalyticsTool to retrieve analytics data for a specific profile.
Get Profile Analytics LogsTool to list analytics log entries for a given profile.
Get Analytics Log EntryTool to retrieve a specific analytics log entry by its ID.
Get Profile Analytics SummaryTool to fetch a summary of analytics data for a given profile.
Get Profile Analytics Top DomainsTool to fetch top domains accessed within a specific profile.
Get Profile Top ServicesTool to fetch top services accessed within a profile.
Get Profile FiltersTool to list native filters associated with a specific profile.
List External Filters for ProfileTool to list third-party filters for a specific profile.
Get Profile FoldersTool to list rule folders (groups) within a profile.
List Custom Rules for ProfileTool to retrieve custom rules associated with a specific profile.
List Custom Rules in FolderTool to retrieve custom rules in a specific folder of a profile.
Get Custom Rule by Rule IDTool to retrieve details of a specific custom rule by its ID.
Get Specific Rule in FolderTool to retrieve a specific rule within a folder by its ID.
Get Profile SchedulesTool to list schedules associated with a specific profile.
Get Profile ScheduleTool to retrieve a specific schedule by its ID within a profile.
Get Profile ServicesTool to list services associated with a specific profile.
Get Service CategoriesTool to list all service categories.
List Services by CategoryTool to list all services within a specific category.
Get UsersTool to retrieve user account data.
Create DeviceTool to create a new device.
Create ProfileTool to create a new blank profile or clone an existing one.
Create Custom Rules for ProfileTool to create custom rules for a profile.
Create Custom Rules in Profile FolderTool to create custom rules within a specific folder for a profile.
Create Profile ScheduleTool to create a new schedule within a specific profile.
Modify DeviceTool to modify an existing device.
Modify OrganizationTool to modify organization settings and limits.
Update Profile by IDTool to modify an existing profile by ID.
Bulk Update Profile FiltersTool to bulk update filters on a specific profile.
Update External Filters for ProfileTool to update external filters for a specific profile.
Modify Profile FilterTool to modify the enabled state of a specific filter on a profile.
Modify Custom Rules for ProfileTool to modify existing custom rule(s) for a profile.
Update Custom Rule by Rule IDTool to update an existing custom rule by its ID.
Move Profile Rule to FolderTool to move a specific custom rule into a different folder.
Update Profile ScheduleTool to update a specific schedule within a profile.
Modify Service for ProfileTool to modify a specific service rule for a profile.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Python 3.9 or higher
  • A Composio account and API key
  • A Control d connection authorized in Composio
  • An OpenAI API key for the CrewAI LLM
  • Basic familiarity with Python

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

bash
pip install composio crewai crewai-tools python-dotenv
What's happening:
  • composio connects your agent to Control d via MCP
  • crewai provides Agent, Task, Crew, and LLM primitives
  • crewai-tools includes MCP helpers
  • python-dotenv loads environment variables from .env

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
USER_ID=your_user_id_here
OPENAI_API_KEY=your_openai_api_key_here

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates with Composio
  • USER_ID scopes the session to your account
  • OPENAI_API_KEY lets CrewAI use your chosen OpenAI model

Import dependencies

python
from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter  # optional import if you plan to adapt tools
from composio import Composio
from dotenv import load_dotenv
import os
from crewai.mcp import MCPServerHTTP

load_dotenv()
What's happening:
  • CrewAI classes define agents and tasks, and run the workflow
  • MCPServerHTTP connects the agent to an MCP endpoint
  • Composio will give you a short lived Control d MCP URL

Create a Composio Tool Router session for Control d

python
composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
session = composio.create(
    user_id=os.getenv("USER_ID"),
    toolkits=["control_d"],
)
url = session.mcp.url
What's happening:
  • You create a Control d only session through Composio
  • Composio returns an MCP HTTP URL that exposes Control d tools

Configure the LLM

python
llm = LLM(
    model="gpt-5-mini",
    api_key=os.getenv("OPENAI_API_KEY"),
)
What's happening:
  • CrewAI will call this LLM for planning and responses
  • You can swap in a different model if needed

Attach the MCP server and create the agent

python
toolkit_agent = Agent(
    role="Control d Assistant",
    goal="Help users interact with Control d through natural language commands",
    backstory=(
        "You are an expert assistant with access to Control d tools. "
        "You can perform various Control d operations on behalf of the user."
    ),
    mcps=[
        MCPServerHTTP(
            url=url,
            streamable=True,
            cache_tools_list=True,
            headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")},
        ),
    ],
    llm=llm,
    verbose=True,
    max_iter=10,
)
What's happening:
  • MCPServerHTTP connects the agent to the Control d MCP endpoint
  • cache_tools_list saves a tools catalog for faster subsequent runs
  • verbose helps you see what the agent is doing

Add a REPL loop with Task and Crew

python
print("Chat started! Type 'exit' or 'quit' to end.\n")
print("Try asking the agent to perform Control d operations.\n")

conversation_context = ""

while True:
    user_input = input("You: ").strip()

    if user_input.lower() in ["exit", "quit", "bye"]:
        print("\nGoodbye!")
        break

    if not user_input:
        continue

    conversation_context += f"\nUser: {user_input}\n"
    print("\nAgent is thinking...\n")

    task = Task(
        description=(
            f"Based on the conversation history:\n{conversation_context}\n\n"
            f"Current user request: {user_input}\n\n"
            f"Please help the user with their Control d related request."
        ),
        expected_output="A helpful response addressing the user's request",
        agent=toolkit_agent,
    )

    crew = Crew(
        agents=[toolkit_agent],
        tasks=[task],
        verbose=False,
    )

    result = crew.kickoff()
    response = str(result)

    conversation_context += f"Agent: {response}\n"
    print(f"Agent: {response}\n")
What's happening:
  • You build a simple chat loop and keep a running context
  • Each user turn becomes a Task handled by the same agent
  • Crew executes the task and returns a response

Run the application

python
if __name__ == "__main__":
    main()
What's happening:
  • Standard Python entry point so you can run python crewai_control_d_agent.py

Complete Code

Here's the complete code to get you started with Control d and CrewAI:

python
# file: crewai_control_d_agent.py
from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter  # optional
from composio import Composio
from dotenv import load_dotenv
import os
from crewai.mcp import MCPServerHTTP

load_dotenv()

def main():
    # Initialize Composio and create a Control d session
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
    session = composio.create(
        user_id=os.getenv("USER_ID"),
        toolkits=["control_d"],
    )
    url = session.mcp.url

    # Configure LLM
    llm = LLM(
        model="gpt-5-mini",
        api_key=os.getenv("OPENAI_API_KEY"),
    )

    # Create Control d assistant agent
    toolkit_agent = Agent(
        role="Control d Assistant",
        goal="Help users interact with Control d through natural language commands",
        backstory=(
            "You are an expert assistant with access to Control d tools. "
            "You can perform various Control d operations on behalf of the user."
        ),
        mcps=[
            MCPServerHTTP(
                url=url,
                streamable=True,
                cache_tools_list=True,
                headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")},
            ),
        ],
        llm=llm,
        verbose=True,
        max_iter=10,
    )

    print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
    print("Try asking the agent to perform Control d operations.\n")

    conversation_context = ""

    while True:
        user_input = input("You: ").strip()

        if user_input.lower() in ["exit", "quit", "bye"]:
            print("\nGoodbye!")
            break

        if not user_input:
            continue

        conversation_context += f"\nUser: {user_input}\n"
        print("\nAgent is thinking...\n")

        task = Task(
            description=(
                f"Based on the conversation history:\n{conversation_context}\n\n"
                f"Current user request: {user_input}\n\n"
                f"Please help the user with their Control d related request."
            ),
            expected_output="A helpful response addressing the user's request",
            agent=toolkit_agent,
        )

        crew = Crew(
            agents=[toolkit_agent],
            tasks=[task],
            verbose=False,
        )

        result = crew.kickoff()
        response = str(result)

        conversation_context += f"Agent: {response}\n"
        print(f"Agent: {response}\n")

if __name__ == "__main__":
    main()

Conclusion

You now have a CrewAI agent connected to Control d through Composio's Tool Router. The agent can perform Control d operations through natural language commands. Next steps:
  • Add role-specific instructions to customize agent behavior
  • Plug in more toolkits for multi-app workflows
  • Chain tasks for complex multi-step operations

How to build Control d MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Control d MCP?

With a standalone Control d MCP server, the agents and LLMs can only access a fixed set of Control d tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Control d and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with CrewAI?

Yes, you can. CrewAI fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Control d tools.

Can I manage the permissions and scopes for Control d while using Tool Router?

Yes, absolutely. You can configure which Control d scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Control d data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.