How to integrate Big data cloud MCP with LangChain

Framework Integration Gradient
Big data cloud Logo
LangChain Logo
divider

Introduction

This guide walks you through connecting Big data cloud to LangChain using the Composio tool router. By the end, you'll have a working Big data cloud agent that can check if this ip address is currently roaming, verify if an email address is valid, get country and demographic info for a given ip, fetch cybersecurity hazard report for this ip through natural language commands.

This guide will help you understand how to give your LangChain agent real control over a Big data cloud account through Composio's Big data cloud MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get and set up your OpenAI and Composio API keys
  • Connect your Big data cloud project to Composio
  • Create a Tool Router MCP session for Big data cloud
  • Initialize an MCP client and retrieve Big data cloud tools
  • Build a LangChain agent that can interact with Big data cloud
  • Set up an interactive chat interface for testing

What is LangChain?

LangChain is a framework for developing applications powered by language models. It provides tools and abstractions for building agents that can reason, use tools, and maintain conversation context.

Key features include:

  • Agent Framework: Build agents that can use tools and make decisions
  • MCP Integration: Connect to external services through Model Context Protocol adapters
  • Memory Management: Maintain conversation history across interactions
  • Multi-Provider Support: Works with OpenAI, Anthropic, and other LLM providers

What is the Big data cloud MCP server, and what's possible with it?

The Big data cloud MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Big data cloud account. It provides structured and secure access to advanced geolocation, reverse geocoding, ASN analysis, and data validation APIs, so your agent can perform actions like looking up IP details, verifying emails, assessing network risk, and analyzing BGP routing on your behalf.

  • IP geolocation and country insights: Let your agent instantly geolocate any IP address, retrieve country-level demographics, and pull rich metadata about locations worldwide.
  • Reverse geocoding with timezone detection: Have your agent translate GPS coordinates into precise locality information along with accurate timezone data—all in one go.
  • Email address verification and data hygiene: Ensure your agent can validate email addresses for proper syntax, domain legitimacy, and disposability to help maintain clean and reliable datasets.
  • ASN and BGP analytics: Allow your agent to analyze internet routing by fetching ranked lists of autonomous systems, upstream and downstream provider details, and active BGP prefixes for a given ASN.
  • Cybersecurity hazard assessment: Empower your agent to fetch and interpret hazard reports for IP addresses, identifying threats like VPN/proxy usage, blacklist status, and hosting risks.

Supported Tools & Triggers

Tools
Am I Roaming APITool to determine if the user is roaming based on their ip address and gps coordinates.
ASN Extended Receiving From Info APITool to return upstream providers (receivingfrom) for a given asn.
ASN Extended Transit To Info APITool to return downstream customers (transitto) for a given asn.
ASN Rank List APITool to fetch a ranked list of autonomous systems by ipv4 announcement volumes.
BGP Active Prefixes APITool to retrieve ipv4 or ipv6 prefixes currently announced on bgp.
Reverse Geocoding With Timezone APITool to return reverse geocoding and time zone info for given coordinates.
Country by IP Address APITool to geolocate an ip address and retrieve country details and demographics.
Country Info APITool to fetch detailed country information by iso code.
Email Address Verification APITool to verify email addresses for syntax, domain validity, and disposability.
Hazard Report APITool to fetch a cybersecurity hazard report for a specified ip address.
Networks by CIDRTool to retrieve bgp-announced networks within a specified cidr range.
Network by IP Address APITool to retrieve registry, asn, and bgp details for a given ip address’s network.
Phone Number Validation by IPTool to validate phone numbers by inferring country from client ip.
Time Zone by IP Address APITool to retrieve time zone information for a given ip address.
Tor Exit Nodes Geolocated APITool to list active tor exit nodes geolocated by country with carrier info.
User Agent Parser APITool to parse a user-agent string into device, os, browser, and bot details.
User Risk APITool to return a risk assessment for a user based on ip signals for fraud prevention.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting this tutorial, make sure you have:
  • Python 3.10 or higher installed on your system
  • A Composio account with an API key
  • An OpenAI API key
  • Basic familiarity with Python and async programming

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

pip install composio-langchain langchain-mcp-adapters langchain python-dotenv

Install the required packages for LangChain with MCP support.

What's happening:

  • composio-langchain provides Composio integration for LangChain
  • langchain-mcp-adapters enables MCP client connections
  • langchain is the core agent framework
  • python-dotenv loads environment variables

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
COMPOSIO_USER_ID=your_composio_user_id_here
OPENAI_API_KEY=your_openai_api_key_here

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates your requests to Composio's API
  • COMPOSIO_USER_ID identifies the user for session management
  • OPENAI_API_KEY enables access to OpenAI's language models

Import dependencies

from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain.agents import create_agent
from dotenv import load_dotenv
from composio import Composio
import asyncio
import os

load_dotenv()
What's happening:
  • We're importing LangChain's MCP adapter and Composio SDK
  • The dotenv import loads environment variables from your .env file
  • This setup prepares the foundation for connecting LangChain with Big data cloud functionality through MCP

Initialize Composio client

async def main():
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))

    if not os.getenv("COMPOSIO_API_KEY"):
        raise ValueError("COMPOSIO_API_KEY is not set")
    if not os.getenv("COMPOSIO_USER_ID"):
        raise ValueError("COMPOSIO_USER_ID is not set")
What's happening:
  • We're loading the COMPOSIO_API_KEY from environment variables and validating it exists
  • Creating a Composio instance that will manage our connection to Big data cloud tools
  • Validating that COMPOSIO_USER_ID is also set before proceeding

Create a Tool Router session

# Create Tool Router session for Big data cloud
session = composio.create(
    user_id=os.getenv("COMPOSIO_USER_ID"),
    toolkits=['big_data_cloud']
)

url = session.mcp.url
What's happening:
  • We're creating a Tool Router session that gives your agent access to Big data cloud tools
  • The create method takes the user ID and specifies which toolkits should be available
  • The returned session.mcp.url is the MCP server URL that your agent will use
  • This approach allows the agent to dynamically load and use Big data cloud tools as needed

Configure the agent with the MCP URL

client = MultiServerMCPClient({
    "big_data_cloud-agent": {
        "transport": "streamable_http",
        "url": session.mcp.url,
        "headers": {
            "x-api-key": os.getenv("COMPOSIO_API_KEY")
        }
    }
})

tools = await client.get_tools()

agent = create_agent("gpt-5", tools)
What's happening:
  • We're creating a MultiServerMCPClient that connects to our Big data cloud MCP server via HTTP
  • The client is configured with a name and the URL from our Tool Router session
  • get_tools() retrieves all available Big data cloud tools that the agent can use
  • We're creating a LangChain agent using the GPT-5 model

Set up interactive chat interface

conversation_history = []

print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
print("Ask any Big data cloud related question or task to the agent.\n")

while True:
    user_input = input("You: ").strip()

    if user_input.lower() in ['exit', 'quit', 'bye']:
        print("\nGoodbye!")
        break

    if not user_input:
        continue

    conversation_history.append({"role": "user", "content": user_input})
    print("\nAgent is thinking...\n")

    response = await agent.ainvoke({"messages": conversation_history})
    conversation_history = response['messages']
    final_response = response['messages'][-1].content
    print(f"Agent: {final_response}\n")
What's happening:
  • We initialize an empty conversation_history list to maintain context across interactions
  • A while loop continuously accepts user input from the command line
  • When a user types a message, it's added to the conversation history and sent to the agent
  • The agent processes the request using the ainvoke() method with the full conversation history
  • Users can type 'exit', 'quit', or 'bye' to end the chat session gracefully

Run the application

if __name__ == "__main__":
    asyncio.run(main())
What's happening:
  • We call the main() function using asyncio.run() to start the application

Complete Code

Here's the complete code to get you started with Big data cloud and LangChain:

from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain.agents import create_agent
from dotenv import load_dotenv
from composio import Composio
import asyncio
import os

load_dotenv()

async def main():
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
    
    if not os.getenv("COMPOSIO_API_KEY"):
        raise ValueError("COMPOSIO_API_KEY is not set")
    if not os.getenv("COMPOSIO_USER_ID"):
        raise ValueError("COMPOSIO_USER_ID is not set")
    
    session = composio.create(
        user_id=os.getenv("COMPOSIO_USER_ID"),
        toolkits=['big_data_cloud']
    )

    url = session.mcp.url
    
    client = MultiServerMCPClient({
        "big_data_cloud-agent": {
            "transport": "streamable_http",
            "url": url,
            "headers": {
                "x-api-key": os.getenv("COMPOSIO_API_KEY")
            }
        }
    })
    
    tools = await client.get_tools()
  
    agent = create_agent("gpt-5", tools)
    
    conversation_history = []
    
    print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
    print("Ask any Big data cloud related question or task to the agent.\n")
    
    while True:
        user_input = input("You: ").strip()
        
        if user_input.lower() in ['exit', 'quit', 'bye']:
            print("\nGoodbye!")
            break
        
        if not user_input:
            continue
        
        conversation_history.append({"role": "user", "content": user_input})
        print("\nAgent is thinking...\n")
        
        response = await agent.ainvoke({"messages": conversation_history})
        conversation_history = response['messages']
        final_response = response['messages'][-1].content
        print(f"Agent: {final_response}\n")

if __name__ == "__main__":
    asyncio.run(main())

Conclusion

You've successfully built a LangChain agent that can interact with Big data cloud through Composio's Tool Router.

Key features of this implementation:

  • Dynamic tool loading through Composio's Tool Router
  • Conversation history maintenance for context-aware responses
  • Async Python provides clean, efficient execution of agent workflows
You can extend this further by adding error handling, implementing specific business logic, or integrating additional Composio toolkits to create multi-app workflows.

How to build Big data cloud MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Big data cloud MCP?

With a standalone Big data cloud MCP server, the agents and LLMs can only access a fixed set of Big data cloud tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Big data cloud and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with LangChain?

Yes, you can. LangChain fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Big data cloud tools.

Can I manage the permissions and scopes for Big data cloud while using Tool Router?

Yes, absolutely. You can configure which Big data cloud scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Big data cloud data and credentials are handled as safely as possible.

Used by agents from

Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.