How to integrate Big data cloud MCP with CrewAI

Framework Integration Gradient
Big data cloud Logo
CrewAI Logo
divider

Introduction

This guide walks you through connecting Big data cloud to CrewAI using the Composio tool router. By the end, you'll have a working Big data cloud agent that can check if this ip address is currently roaming, verify if an email address is valid, get country and demographic info for a given ip, fetch cybersecurity hazard report for this ip through natural language commands.

This guide will help you understand how to give your CrewAI agent real control over a Big data cloud account through Composio's Big data cloud MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get a Composio API key and configure your Big data cloud connection
  • Set up CrewAI with an MCP enabled agent
  • Create a Tool Router session or standalone MCP server for Big data cloud
  • Build a conversational loop where your agent can execute Big data cloud operations

What is CrewAI?

CrewAI is a powerful framework for building multi-agent AI systems. It provides primitives for defining agents with specific roles, creating tasks, and orchestrating workflows through crews.

Key features include:

  • Agent Roles: Define specialized agents with specific goals and backstories
  • Task Management: Create tasks with clear descriptions and expected outputs
  • Crew Orchestration: Combine agents and tasks into collaborative workflows
  • MCP Integration: Connect to external tools through Model Context Protocol

What is the Big data cloud MCP server, and what's possible with it?

The Big data cloud MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Big data cloud account. It provides structured and secure access to advanced geolocation, reverse geocoding, ASN analysis, and data validation APIs, so your agent can perform actions like looking up IP details, verifying emails, assessing network risk, and analyzing BGP routing on your behalf.

  • IP geolocation and country insights: Let your agent instantly geolocate any IP address, retrieve country-level demographics, and pull rich metadata about locations worldwide.
  • Reverse geocoding with timezone detection: Have your agent translate GPS coordinates into precise locality information along with accurate timezone data—all in one go.
  • Email address verification and data hygiene: Ensure your agent can validate email addresses for proper syntax, domain legitimacy, and disposability to help maintain clean and reliable datasets.
  • ASN and BGP analytics: Allow your agent to analyze internet routing by fetching ranked lists of autonomous systems, upstream and downstream provider details, and active BGP prefixes for a given ASN.
  • Cybersecurity hazard assessment: Empower your agent to fetch and interpret hazard reports for IP addresses, identifying threats like VPN/proxy usage, blacklist status, and hosting risks.

Supported Tools & Triggers

Tools
Am I Roaming APITool to determine if the user is roaming based on their ip address and gps coordinates.
ASN Extended Receiving From Info APITool to return upstream providers (receivingfrom) for a given asn.
ASN Extended Transit To Info APITool to return downstream customers (transitto) for a given asn.
ASN Rank List APITool to fetch a ranked list of autonomous systems by ipv4 announcement volumes.
BGP Active Prefixes APITool to retrieve ipv4 or ipv6 prefixes currently announced on bgp.
Reverse Geocoding With Timezone APITool to return reverse geocoding and time zone info for given coordinates.
Country by IP Address APITool to geolocate an ip address and retrieve country details and demographics.
Country Info APITool to fetch detailed country information by iso code.
Email Address Verification APITool to verify email addresses for syntax, domain validity, and disposability.
Hazard Report APITool to fetch a cybersecurity hazard report for a specified ip address.
Networks by CIDRTool to retrieve bgp-announced networks within a specified cidr range.
Network by IP Address APITool to retrieve registry, asn, and bgp details for a given ip address’s network.
Phone Number Validation by IPTool to validate phone numbers by inferring country from client ip.
Time Zone by IP Address APITool to retrieve time zone information for a given ip address.
Tor Exit Nodes Geolocated APITool to list active tor exit nodes geolocated by country with carrier info.
User Agent Parser APITool to parse a user-agent string into device, os, browser, and bot details.
User Risk APITool to return a risk assessment for a user based on ip signals for fraud prevention.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Python 3.9 or higher
  • A Composio account and API key
  • A Big data cloud connection authorized in Composio
  • An OpenAI API key for the CrewAI LLM
  • Basic familiarity with Python

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

bash
pip install composio crewai crewai-tools[mcp] python-dotenv
What's happening:
  • composio connects your agent to Big data cloud via MCP
  • crewai provides Agent, Task, Crew, and LLM primitives
  • crewai-tools[mcp] includes MCP helpers
  • python-dotenv loads environment variables from .env

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
USER_ID=your_user_id_here
OPENAI_API_KEY=your_openai_api_key_here

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates with Composio
  • USER_ID scopes the session to your account
  • OPENAI_API_KEY lets CrewAI use your chosen OpenAI model

Import dependencies

python
import os
from composio import Composio
from crewai import Agent, Task, Crew
from crewai_tools import MCPServerAdapter
import dotenv

dotenv.load_dotenv()

COMPOSIO_API_KEY = os.getenv("COMPOSIO_API_KEY")
COMPOSIO_USER_ID = os.getenv("COMPOSIO_USER_ID")

if not COMPOSIO_API_KEY:
    raise ValueError("COMPOSIO_API_KEY is not set")
if not COMPOSIO_USER_ID:
    raise ValueError("COMPOSIO_USER_ID is not set")
What's happening:
  • CrewAI classes define agents and tasks, and run the workflow
  • MCPServerHTTP connects the agent to an MCP endpoint
  • Composio will give you a short lived Big data cloud MCP URL

Create a Composio Tool Router session for Big data cloud

python
composio_client = Composio(api_key=COMPOSIO_API_KEY)
session = composio_client.create(user_id=COMPOSIO_USER_ID, toolkits=["big_data_cloud"])

url = session.mcp.url
What's happening:
  • You create a Big data cloud only session through Composio
  • Composio returns an MCP HTTP URL that exposes Big data cloud tools

Initialize the MCP Server

python
server_params = {
    "url": url,
    "transport": "streamable-http",
    "headers": {"x-api-key": COMPOSIO_API_KEY},
}

with MCPServerAdapter(server_params) as tools:
    agent = Agent(
        role="Search Assistant",
        goal="Help users search the internet effectively",
        backstory="You are a helpful assistant with access to search tools.",
        tools=tools,
        verbose=False,
        max_iter=10,
    )
What's Happening:
  • Server Configuration: The code sets up connection parameters including the MCP server URL, streamable HTTP transport, and Composio API key authentication.
  • MCP Adapter Bridge: MCPServerAdapter acts as a context manager that converts Composio MCP tools into a CrewAI-compatible format.
  • Agent Setup: Creates a CrewAI Agent with a defined role (Search Assistant), goal (help with internet searches), and access to the MCP tools.
  • Configuration Options: The agent includes settings like verbose=False for clean output and max_iter=10 to prevent infinite loops.
  • Dynamic Tool Usage: Once created, the agent automatically accesses all Composio Search tools and decides when to use them based on user queries.

Create a CLI Chatloop and define the Crew

python
print("Chat started! Type 'exit' or 'quit' to end.\n")

conversation_context = ""

while True:
    user_input = input("You: ").strip()

    if user_input.lower() in ["exit", "quit", "bye"]:
        print("\nGoodbye!")
        break

    if not user_input:
        continue

    conversation_context += f"\nUser: {user_input}\n"
    print("\nAgent is thinking...\n")

    task = Task(
        description=(
            f"Conversation history:\n{conversation_context}\n\n"
            f"Current request: {user_input}"
        ),
        expected_output="A helpful response addressing the user's request",
        agent=agent,
    )

    crew = Crew(agents=[agent], tasks=[task], verbose=False)
    result = crew.kickoff()
    response = str(result)

    conversation_context += f"Agent: {response}\n"
    print(f"Agent: {response}\n")
What's Happening:
  • Interactive CLI Setup: The code creates an infinite loop that continuously prompts for user input and maintains the entire conversation history in a string variable.
  • Input Validation: Empty inputs are ignored to prevent processing blank messages and keep the conversation clean.
  • Context Building: Each user message is appended to the conversation context, which preserves the full dialogue history for better agent responses.
  • Dynamic Task Creation: For every user input, a new Task is created that includes both the full conversation history and the current request as context.
  • Crew Execution: A Crew is instantiated with the agent and task, then kicked off to process the request and generate a response.
  • Response Management: The agent's response is converted to a string, added to the conversation context, and displayed to the user, maintaining conversational continuity.

Complete Code

Here's the complete code to get you started with Big data cloud and CrewAI:

from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter
from composio import Composio
from dotenv import load_dotenv
import os

load_dotenv()

GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
COMPOSIO_API_KEY = os.getenv("COMPOSIO_API_KEY")
COMPOSIO_USER_ID = os.getenv("COMPOSIO_USER_ID")

if not GOOGLE_API_KEY:
    raise ValueError("GOOGLE_API_KEY is not set in the environment.")
if not COMPOSIO_API_KEY:
    raise ValueError("COMPOSIO_API_KEY is not set in the environment.")
if not COMPOSIO_USER_ID:
    raise ValueError("COMPOSIO_USER_ID is not set in the environment.")

# Initialize Composio and create a session
composio = Composio(api_key=COMPOSIO_API_KEY)
session = composio.create(
    user_id=COMPOSIO_USER_ID,
    toolkits=["big_data_cloud"],
)
url = session.mcp.url

# Configure LLM
llm = LLM(
    model="gpt-5",
    api_key=os.getenv("OPENAI_API_KEY"),
)

server_params = {
    "url": url,
    "transport": "streamable-http",
    "headers": {"x-api-key": COMPOSIO_API_KEY},
}

with MCPServerAdapter(server_params) as tools:
    agent = Agent(
        role="Search Assistant",
        goal="Help users with internet searches",
        backstory="You are an expert assistant with access to Composio Search tools.",
        tools=tools,
        llm=llm,
        verbose=False,
        max_iter=10,
    )

    print("Chat started! Type 'exit' or 'quit' to end.\n")

    conversation_context = ""

    while True:
        user_input = input("You: ").strip()

        if user_input.lower() in ["exit", "quit", "bye"]:
            print("\nGoodbye!")
            break

        if not user_input:
            continue

        conversation_context += f"\nUser: {user_input}\n"
        print("\nAgent is thinking...\n")

        task = Task(
            description=(
                f"Conversation history:\n{conversation_context}\n\n"
                f"Current request: {user_input}"
            ),
            expected_output="A helpful response addressing the user's request",
            agent=agent,
        )

        crew = Crew(agents=[agent], tasks=[task], verbose=False)
        result = crew.kickoff()
        response = str(result)

        conversation_context += f"Agent: {response}\n"
        print(f"Agent: {response}\n")

Conclusion

You now have a CrewAI agent connected to Big data cloud through Composio's Tool Router. The agent can perform Big data cloud operations through natural language commands.

Next steps:

  • Add role-specific instructions to customize agent behavior
  • Plug in more toolkits for multi-app workflows
  • Chain tasks for complex multi-step operations

How to build Big data cloud MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Big data cloud MCP?

With a standalone Big data cloud MCP server, the agents and LLMs can only access a fixed set of Big data cloud tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Big data cloud and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with CrewAI?

Yes, you can. CrewAI fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Big data cloud tools.

Can I manage the permissions and scopes for Big data cloud while using Tool Router?

Yes, absolutely. You can configure which Big data cloud scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Big data cloud data and credentials are handled as safely as possible.

Used by agents from

Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.