How to integrate Backendless MCP with OpenAI Agents SDK

Framework Integration Gradient
Backendless Logo
open-ai-agents-sdk Logo
divider

Introduction

This guide walks you through connecting Backendless to the OpenAI Agents SDK using the Composio tool router. By the end, you'll have a working Backendless agent that can list all files in the user uploads folder, create a new directory for project assets, retrieve users where status is active, delete a file named report.pdf from backups through natural language commands.

This guide will help you understand how to give your OpenAI Agents SDK agent real control over a Backendless account through Composio's Backendless MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get and set up your OpenAI and Composio API keys
  • Install the necessary dependencies
  • Initialize Composio and create a Tool Router session for Backendless
  • Configure an AI agent that can use Backendless as a tool
  • Run a live chat session where you can ask the agent to perform Backendless operations

What is open-ai-agents-sdk?

The OpenAI Agents SDK is a lightweight framework for building AI agents that can use tools and maintain conversation state. It provides a simple interface for creating agents with hosted MCP tool support.

Key features include:

  • Hosted MCP Tools: Connect to external services through hosted MCP endpoints
  • SQLite Sessions: Persist conversation history across interactions
  • Simple API: Clean interface with Agent, Runner, and tool configuration
  • Streaming Support: Real-time response streaming for interactive applications

What is the Backendless MCP server, and what's possible with it?

The Backendless MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Backendless account. It provides structured and secure access to your backend services, so your agent can perform actions like managing file storage, retrieving and updating database records, handling directories, and orchestrating server-side logic on your behalf.

  • Dynamic file and directory management: Allow your agent to create, copy, delete, and list files or folders in your Backendless storage, keeping your app data organized.
  • Database record retrieval and filtering: Empower the agent to fetch objects from specific tables with advanced filtering, sorting, and pagination for instant data access.
  • Automated backend task scheduling: Let the agent create or delete timers to run recurring or one-off server-side logic, enabling powerful backend automation.
  • Custom Hive resource management: Instruct your agent to create new Backendless Hive resources and retrieve full maps of stored values for scalable, flexible data handling.
  • Safe data cleanup: Make it easy for your agent to remove obsolete files, directories, or scheduled tasks, helping maintain a tidy and efficient backend environment.

Supported Tools & Triggers

Tools
Copy FileTool to copy a file or directory within backendless file storage.
Create DirectoryTool to create a new directory at the specified path.
Create Backendless HiveTool to create a new hive.
Create Backendless TimerTool to create a new timer with schedule and code.
Delete DirectoryTool to delete a directory at the specified path in backendless file storage.
Delete FileTool to delete a file at the specified path in backendless file storage.
Delete Backendless TimerTool to delete a backendless timer by name.
Directory ListingTool to retrieve a listing of files and directories at a given path.
General Object RetrievalTool to retrieve objects from a specified backendless table with filtering, sorting, and pagination.
Get All ValuesTool to retrieve all values from a map in a specified hive.
Get Counter ValueTool to retrieve the current value of a backendless counter.
Get File CountTool to get the count of files in a backendless directory.
Get Key ItemsTool to retrieve values for a specified key in a list (all, single, or range).
Get Backendless TimerTool to retrieve information about a specific timer.
Map PutTool to set or update key-value pairs in a hive map.
Move FileTool to move a file or directory within backendless file storage.
Publish MessageTool to publish a message to a specified messaging channel.
Reset CounterTool to reset a backendless counter back to zero.
Set Counter ValueTool to set a backendless counter to a specific value conditionally.
Update Backendless TimerTool to update schedule or code of an existing timer.
Change User PasswordTool to change the password for the current user.
Delete UserTool to delete a user by user id.
Find User by IDTool to retrieve user information by id.
Grant Permission to UserTool to grant a permission to a user on a specific data object.
User LoginTool to log in a registered user with identity and password.
User LogoutTool to log out the currently authenticated user.
User Password RecoveryTool to initiate password recovery for a user.
User RegistrationTool to register a new user with email and password.
Revoke Permission from UserTool to revoke a permission from a specified user or role on a data table.
Update UserTool to update properties of an existing backendless user.
Validate User TokenTool to validate a user session token.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Composio API Key and OpenAI API Key
  • Primary know-how of OpenAI Agents SDK
  • A live Backendless project
  • Some knowledge of Python or Typescript

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key

Install dependencies

pip install composio_openai_agents openai-agents python-dotenv

Install the Composio SDK and the OpenAI Agents SDK.

Set up environment variables

bash
OPENAI_API_KEY=sk-...your-api-key
COMPOSIO_API_KEY=your-api-key
USER_ID=composio_user@gmail.com

Create a .env file and add your OpenAI and Composio API keys.

Import dependencies

import asyncio
import os
from dotenv import load_dotenv

from composio import Composio
from composio_openai_agents import OpenAIAgentsProvider
from agents import Agent, Runner, HostedMCPTool, SQLiteSession
What's happening:
  • You're importing all necessary libraries.
  • The Composio and OpenAIAgentsProvider classes are imported to connect your OpenAI agent to Composio tools like Backendless.

Set up the Composio instance

load_dotenv()

api_key = os.getenv("COMPOSIO_API_KEY")
user_id = os.getenv("USER_ID")

if not api_key:
    raise RuntimeError("COMPOSIO_API_KEY is not set. Create a .env file with COMPOSIO_API_KEY=your_key")

# Initialize Composio
composio = Composio(api_key=api_key, provider=OpenAIAgentsProvider())
What's happening:
  • load_dotenv() loads your .env file so OPENAI_API_KEY and COMPOSIO_API_KEY are available as environment variables.
  • Creating a Composio instance using the API Key and OpenAIAgentsProvider class.

Create a Tool Router session

# Create a Backendless Tool Router session
session = composio.create(
    user_id=user_id,
    toolkits=["backendless"]
)

mcp_url = session.mcp.url

What is happening:

  • You give the Tool Router the user id and the toolkits you want available. Here, it is only backendless.
  • The router checks the user's Backendless connection and prepares the MCP endpoint.
  • The returned session.mcp.url is the MCP URL that your agent will use to access Backendless.
  • This approach keeps things lightweight and lets the agent request Backendless tools only when needed during the conversation.

Configure the agent

# Configure agent with MCP tool
agent = Agent(
    name="Assistant",
    model="gpt-5",
    instructions=(
        "You are a helpful assistant that can access Backendless. "
        "Help users perform Backendless operations through natural language."
    ),
    tools=[
        HostedMCPTool(
            tool_config={
                "type": "mcp",
                "server_label": "tool_router",
                "server_url": mcp_url,
                "headers": {"x-api-key": api_key},
                "require_approval": "never",
            }
        )
    ],
)
What's happening:
  • We're creating an Agent instance with a name, model (gpt-5), and clear instructions about its purpose.
  • The agent's instructions tell it that it can access Backendless and help with queries, inserts, updates, authentication, and fetching database information.
  • The tools array includes a HostedMCPTool that connects to the MCP server URL we created earlier.
  • The headers dict includes the Composio API key for secure authentication with the MCP server.
  • require_approval: 'never' means the agent can execute Backendless operations without asking for permission each time, making interactions smoother.

Start chat loop and handle conversation

print("\nComposio Tool Router session created.")

chat_session = SQLiteSession("conversation_openai_toolrouter")

print("\nChat started. Type your requests below.")
print("Commands: 'exit', 'quit', or 'q' to end\n")

async def main():
    try:
        result = await Runner.run(
            agent,
            "What can you help me with?",
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")
    except Exception as e:
        print(f"Error: {e}\n")

    while True:
        user_input = input("You: ").strip()
        if user_input.lower() in {"exit", "quit", "q"}:
            print("Goodbye!")
            break

        result = await Runner.run(
            agent,
            user_input,
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")

asyncio.run(main())
What's happening:
  • The program prints a session URL that you visit to authorize Backendless.
  • After authorization, the chat begins.
  • Each message you type is processed by the agent using Runner.run().
  • The responses are printed to the console, and conversations are saved locally using SQLite.
  • Typing exit, quit, or q cleanly ends the chat.

Complete Code

Here's the complete code to get you started with Backendless and open-ai-agents-sdk:

import asyncio
import os
from dotenv import load_dotenv

from composio import Composio
from composio_openai_agents import OpenAIAgentsProvider
from agents import Agent, Runner, HostedMCPTool, SQLiteSession

load_dotenv()

api_key = os.getenv("COMPOSIO_API_KEY")
user_id = os.getenv("USER_ID")

if not api_key:
    raise RuntimeError("COMPOSIO_API_KEY is not set. Create a .env file with COMPOSIO_API_KEY=your_key")

# Initialize Composio
composio = Composio(api_key=api_key, provider=OpenAIAgentsProvider())

# Create Tool Router session
session = composio.create(
    user_id=user_id,
    toolkits=["backendless"]
)
mcp_url = session.mcp.url

# Configure agent with MCP tool
agent = Agent(
    name="Assistant",
    model="gpt-5",
    instructions=(
        "You are a helpful assistant that can access Backendless. "
        "Help users perform Backendless operations through natural language."
    ),
    tools=[
        HostedMCPTool(
            tool_config={
                "type": "mcp",
                "server_label": "tool_router",
                "server_url": mcp_url,
                "headers": {"x-api-key": api_key},
                "require_approval": "never",
            }
        )
    ],
)

print("\nComposio Tool Router session created.")

chat_session = SQLiteSession("conversation_openai_toolrouter")

print("\nChat started. Type your requests below.")
print("Commands: 'exit', 'quit', or 'q' to end\n")

async def main():
    try:
        result = await Runner.run(
            agent,
            "What can you help me with?",
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")
    except Exception as e:
        print(f"Error: {e}\n")

    while True:
        user_input = input("You: ").strip()
        if user_input.lower() in {"exit", "quit", "q"}:
            print("Goodbye!")
            break

        result = await Runner.run(
            agent,
            user_input,
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")

asyncio.run(main())

Conclusion

This was a starter code for integrating Backendless MCP with OpenAI Agents SDK to build a functional AI agent that can interact with Backendless.

Key features:

  • Hosted MCP tool integration through Composio's Tool Router
  • SQLite session persistence for conversation history
  • Simple async chat loop for interactive testing
You can extend this by adding more toolkits, implementing custom business logic, or building a web interface around the agent.

How to build Backendless MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Backendless MCP?

With a standalone Backendless MCP server, the agents and LLMs can only access a fixed set of Backendless tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Backendless and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with OpenAI Agents SDK?

Yes, you can. OpenAI Agents SDK fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Backendless tools.

Can I manage the permissions and scopes for Backendless while using Tool Router?

Yes, absolutely. You can configure which Backendless scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Backendless data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.