How to integrate Backendless MCP with LangChain

Framework Integration Gradient
Backendless Logo
LangChain Logo
divider

Introduction

This guide walks you through connecting Backendless to LangChain using the Composio tool router. By the end, you'll have a working Backendless agent that can list all files in the user uploads folder, create a new directory for project assets, retrieve users where status is active, delete a file named report.pdf from backups through natural language commands.

This guide will help you understand how to give your LangChain agent real control over a Backendless account through Composio's Backendless MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get and set up your OpenAI and Composio API keys
  • Connect your Backendless project to Composio
  • Create a Tool Router MCP session for Backendless
  • Initialize an MCP client and retrieve Backendless tools
  • Build a LangChain agent that can interact with Backendless
  • Set up an interactive chat interface for testing

What is LangChain?

LangChain is a framework for developing applications powered by language models. It provides tools and abstractions for building agents that can reason, use tools, and maintain conversation context.

Key features include:

  • Agent Framework: Build agents that can use tools and make decisions
  • MCP Integration: Connect to external services through Model Context Protocol adapters
  • Memory Management: Maintain conversation history across interactions
  • Multi-Provider Support: Works with OpenAI, Anthropic, and other LLM providers

What is the Backendless MCP server, and what's possible with it?

The Backendless MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Backendless account. It provides structured and secure access to your backend services, so your agent can perform actions like managing file storage, retrieving and updating database records, handling directories, and orchestrating server-side logic on your behalf.

  • Dynamic file and directory management: Allow your agent to create, copy, delete, and list files or folders in your Backendless storage, keeping your app data organized.
  • Database record retrieval and filtering: Empower the agent to fetch objects from specific tables with advanced filtering, sorting, and pagination for instant data access.
  • Automated backend task scheduling: Let the agent create or delete timers to run recurring or one-off server-side logic, enabling powerful backend automation.
  • Custom Hive resource management: Instruct your agent to create new Backendless Hive resources and retrieve full maps of stored values for scalable, flexible data handling.
  • Safe data cleanup: Make it easy for your agent to remove obsolete files, directories, or scheduled tasks, helping maintain a tidy and efficient backend environment.

Supported Tools & Triggers

Tools
Copy FileTool to copy a file or directory within backendless file storage.
Create DirectoryTool to create a new directory at the specified path.
Create Backendless HiveTool to create a new hive.
Create Backendless TimerTool to create a new timer with schedule and code.
Delete DirectoryTool to delete a directory at the specified path in backendless file storage.
Delete FileTool to delete a file at the specified path in backendless file storage.
Delete Backendless TimerTool to delete a backendless timer by name.
Directory ListingTool to retrieve a listing of files and directories at a given path.
General Object RetrievalTool to retrieve objects from a specified backendless table with filtering, sorting, and pagination.
Get All ValuesTool to retrieve all values from a map in a specified hive.
Get Counter ValueTool to retrieve the current value of a backendless counter.
Get File CountTool to get the count of files in a backendless directory.
Get Key ItemsTool to retrieve values for a specified key in a list (all, single, or range).
Get Backendless TimerTool to retrieve information about a specific timer.
Map PutTool to set or update key-value pairs in a hive map.
Move FileTool to move a file or directory within backendless file storage.
Publish MessageTool to publish a message to a specified messaging channel.
Reset CounterTool to reset a backendless counter back to zero.
Set Counter ValueTool to set a backendless counter to a specific value conditionally.
Update Backendless TimerTool to update schedule or code of an existing timer.
Change User PasswordTool to change the password for the current user.
Delete UserTool to delete a user by user id.
Find User by IDTool to retrieve user information by id.
Grant Permission to UserTool to grant a permission to a user on a specific data object.
User LoginTool to log in a registered user with identity and password.
User LogoutTool to log out the currently authenticated user.
User Password RecoveryTool to initiate password recovery for a user.
User RegistrationTool to register a new user with email and password.
Revoke Permission from UserTool to revoke a permission from a specified user or role on a data table.
Update UserTool to update properties of an existing backendless user.
Validate User TokenTool to validate a user session token.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting this tutorial, make sure you have:
  • Python 3.10 or higher installed on your system
  • A Composio account with an API key
  • An OpenAI API key
  • Basic familiarity with Python and async programming

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

pip install composio-langchain langchain-mcp-adapters langchain python-dotenv

Install the required packages for LangChain with MCP support.

What's happening:

  • composio-langchain provides Composio integration for LangChain
  • langchain-mcp-adapters enables MCP client connections
  • langchain is the core agent framework
  • python-dotenv loads environment variables

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
COMPOSIO_USER_ID=your_composio_user_id_here
OPENAI_API_KEY=your_openai_api_key_here

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates your requests to Composio's API
  • COMPOSIO_USER_ID identifies the user for session management
  • OPENAI_API_KEY enables access to OpenAI's language models

Import dependencies

from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain.agents import create_agent
from dotenv import load_dotenv
from composio import Composio
import asyncio
import os

load_dotenv()
What's happening:
  • We're importing LangChain's MCP adapter and Composio SDK
  • The dotenv import loads environment variables from your .env file
  • This setup prepares the foundation for connecting LangChain with Backendless functionality through MCP

Initialize Composio client

async def main():
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))

    if not os.getenv("COMPOSIO_API_KEY"):
        raise ValueError("COMPOSIO_API_KEY is not set")
    if not os.getenv("COMPOSIO_USER_ID"):
        raise ValueError("COMPOSIO_USER_ID is not set")
What's happening:
  • We're loading the COMPOSIO_API_KEY from environment variables and validating it exists
  • Creating a Composio instance that will manage our connection to Backendless tools
  • Validating that COMPOSIO_USER_ID is also set before proceeding

Create a Tool Router session

# Create Tool Router session for Backendless
session = composio.create(
    user_id=os.getenv("COMPOSIO_USER_ID"),
    toolkits=['backendless']
)

url = session.mcp.url
What's happening:
  • We're creating a Tool Router session that gives your agent access to Backendless tools
  • The create method takes the user ID and specifies which toolkits should be available
  • The returned session.mcp.url is the MCP server URL that your agent will use
  • This approach allows the agent to dynamically load and use Backendless tools as needed

Configure the agent with the MCP URL

client = MultiServerMCPClient({
    "backendless-agent": {
        "transport": "streamable_http",
        "url": session.mcp.url,
        "headers": {
            "x-api-key": os.getenv("COMPOSIO_API_KEY")
        }
    }
})

tools = await client.get_tools()

agent = create_agent("gpt-5", tools)
What's happening:
  • We're creating a MultiServerMCPClient that connects to our Backendless MCP server via HTTP
  • The client is configured with a name and the URL from our Tool Router session
  • get_tools() retrieves all available Backendless tools that the agent can use
  • We're creating a LangChain agent using the GPT-5 model

Set up interactive chat interface

conversation_history = []

print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
print("Ask any Backendless related question or task to the agent.\n")

while True:
    user_input = input("You: ").strip()

    if user_input.lower() in ['exit', 'quit', 'bye']:
        print("\nGoodbye!")
        break

    if not user_input:
        continue

    conversation_history.append({"role": "user", "content": user_input})
    print("\nAgent is thinking...\n")

    response = await agent.ainvoke({"messages": conversation_history})
    conversation_history = response['messages']
    final_response = response['messages'][-1].content
    print(f"Agent: {final_response}\n")
What's happening:
  • We initialize an empty conversation_history list to maintain context across interactions
  • A while loop continuously accepts user input from the command line
  • When a user types a message, it's added to the conversation history and sent to the agent
  • The agent processes the request using the ainvoke() method with the full conversation history
  • Users can type 'exit', 'quit', or 'bye' to end the chat session gracefully

Run the application

if __name__ == "__main__":
    asyncio.run(main())
What's happening:
  • We call the main() function using asyncio.run() to start the application

Complete Code

Here's the complete code to get you started with Backendless and LangChain:

from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain.agents import create_agent
from dotenv import load_dotenv
from composio import Composio
import asyncio
import os

load_dotenv()

async def main():
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
    
    if not os.getenv("COMPOSIO_API_KEY"):
        raise ValueError("COMPOSIO_API_KEY is not set")
    if not os.getenv("COMPOSIO_USER_ID"):
        raise ValueError("COMPOSIO_USER_ID is not set")
    
    session = composio.create(
        user_id=os.getenv("COMPOSIO_USER_ID"),
        toolkits=['backendless']
    )

    url = session.mcp.url
    
    client = MultiServerMCPClient({
        "backendless-agent": {
            "transport": "streamable_http",
            "url": url,
            "headers": {
                "x-api-key": os.getenv("COMPOSIO_API_KEY")
            }
        }
    })
    
    tools = await client.get_tools()
  
    agent = create_agent("gpt-5", tools)
    
    conversation_history = []
    
    print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
    print("Ask any Backendless related question or task to the agent.\n")
    
    while True:
        user_input = input("You: ").strip()
        
        if user_input.lower() in ['exit', 'quit', 'bye']:
            print("\nGoodbye!")
            break
        
        if not user_input:
            continue
        
        conversation_history.append({"role": "user", "content": user_input})
        print("\nAgent is thinking...\n")
        
        response = await agent.ainvoke({"messages": conversation_history})
        conversation_history = response['messages']
        final_response = response['messages'][-1].content
        print(f"Agent: {final_response}\n")

if __name__ == "__main__":
    asyncio.run(main())

Conclusion

You've successfully built a LangChain agent that can interact with Backendless through Composio's Tool Router.

Key features of this implementation:

  • Dynamic tool loading through Composio's Tool Router
  • Conversation history maintenance for context-aware responses
  • Async Python provides clean, efficient execution of agent workflows
You can extend this further by adding error handling, implementing specific business logic, or integrating additional Composio toolkits to create multi-app workflows.

How to build Backendless MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Backendless MCP?

With a standalone Backendless MCP server, the agents and LLMs can only access a fixed set of Backendless tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Backendless and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with LangChain?

Yes, you can. LangChain fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Backendless tools.

Can I manage the permissions and scopes for Backendless while using Tool Router?

Yes, absolutely. You can configure which Backendless scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Backendless data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.