How to integrate Affinda MCP with OpenAI Agents SDK

Framework Integration Gradient
Affinda Logo
open-ai-agents-sdk Logo
divider

Introduction

This guide walks you through connecting Affinda to the OpenAI Agents SDK using the Composio tool router. By the end, you'll have a working Affinda agent that can extract invoice data from uploaded pdf, delete a document no longer needed, create a new tag for hr documents, set up webhook for document parsing events through natural language commands.

This guide will help you understand how to give your OpenAI Agents SDK agent real control over a Affinda account through Composio's Affinda MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get and set up your OpenAI and Composio API keys
  • Install the necessary dependencies
  • Initialize Composio and create a Tool Router session for Affinda
  • Configure an AI agent that can use Affinda as a tool
  • Run a live chat session where you can ask the agent to perform Affinda operations

What is open-ai-agents-sdk?

The OpenAI Agents SDK is a lightweight framework for building AI agents that can use tools and maintain conversation state. It provides a simple interface for creating agents with hosted MCP tool support.

Key features include:

  • Hosted MCP Tools: Connect to external services through hosted MCP endpoints
  • SQLite Sessions: Persist conversation history across interactions
  • Simple API: Clean interface with Agent, Runner, and tool configuration
  • Streaming Support: Real-time response streaming for interactive applications

What is the Affinda MCP server, and what's possible with it?

The Affinda MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Affinda account. It provides structured and secure access to your document processing workflows, so your agent can upload files, extract data, organize workspaces, label documents, and automate annotation management on your behalf.

  • AI-powered document upload and extraction: Instantly have your agent upload new documents for parsing and extract structured data from various formats using Affinda's advanced AI models.
  • Workspace and collection management: Let your agent create, group, and organize documents into collections and workspaces, keeping your document processing streamlined and organized.
  • Automated annotation updates: Empower your agent to batch update or modify multiple document annotations in a single request, saving you time on manual corrections.
  • Document tagging and organization: Direct your agent to create tags and label documents, making it easy to categorize and quickly retrieve important files.
  • Effortless cleanup and resource management: Have your agent delete unwanted documents or collections, ensuring your Affinda account stays tidy and relevant at all times.

Supported Tools & Triggers

Tools
Batch Update AnnotationsTool to update multiple annotations in one request.
Create CollectionTool to create a new collection.
Create DocumentTool to upload a new document for parsing.
Create OrganizationTool to create a new organization.
Create RESTHook SubscriptionTool to create a new resthook subscription.
Create TagTool to create a new tag.
Create Validation ResultTool to create a validation result.
Create WorkspaceTool to create a new workspace.
Delete CollectionTool to delete a specific collection by its id.
Delete DocumentTool to delete a specific document by its id.
Delete OrganizationTool to delete a specific organization by its id.
Delete Resthook SubscriptionTool to delete a specific resthook subscription by id.
Delete WorkspaceTool to delete a specific workspace by its id.
Delete Workspace MembershipTool to remove a user from a workspace by membership id.
Get TagsTool to list all tags.
Get All Validation ResultsTool to list validation results for documents.
Get Workspace MembershipsTool to list all workspace memberships for the authenticated user.
Get AnnotationsTool to retrieve a list of all annotations.
Get CollectionTool to retrieve details of a specific collection by its id.
Get CollectionsTool to retrieve a list of all collections.
Get DocumentTool to retrieve details of a specific document by its id.
Get DocumentsTool to retrieve a list of all documents.
Get Document TypeTool to retrieve details of a specific document type by its id.
Get Document TypesTool to retrieve a list of all document types.
Get ExtractorsTool to retrieve a list of all extractors.
Get OrganizationTool to retrieve details of a specific organization by its id.
Get OrganizationsTool to retrieve a list of all organizations.
Get Resthook SubscriptionTool to retrieve details of a specific resthook subscription by its id.
Get RESTHook SubscriptionsTool to retrieve a list of all resthook subscriptions.
Get Usage by WorkspaceTool to retrieve monthly credits consumption for a workspace.
Get WorkspaceTool to retrieve details of a specific workspace by its id.
Get Workspace MembershipTool to retrieve details of a specific workspace membership by its id.
Get WorkspacesTool to retrieve a list of all workspaces.
Update CollectionTool to update specific fields of a collection.
Update DocumentTool to update specific fields of a document.
Update Document DataTool to update parsed data for a resume or job description document.
Update OrganizationTool to update specific fields of an organization.
Update RESTHook SubscriptionTool to update an existing resthook subscription.
Update WorkspaceTool to update specific fields of a workspace.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Composio API Key and OpenAI API Key
  • Primary know-how of OpenAI Agents SDK
  • A live Affinda project
  • Some knowledge of Python or Typescript

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key

Install dependencies

pip install composio_openai_agents openai-agents python-dotenv

Install the Composio SDK and the OpenAI Agents SDK.

Set up environment variables

bash
OPENAI_API_KEY=sk-...your-api-key
COMPOSIO_API_KEY=your-api-key
USER_ID=composio_user@gmail.com

Create a .env file and add your OpenAI and Composio API keys.

Import dependencies

import asyncio
import os
from dotenv import load_dotenv

from composio import Composio
from composio_openai_agents import OpenAIAgentsProvider
from agents import Agent, Runner, HostedMCPTool, SQLiteSession
What's happening:
  • You're importing all necessary libraries.
  • The Composio and OpenAIAgentsProvider classes are imported to connect your OpenAI agent to Composio tools like Affinda.

Set up the Composio instance

load_dotenv()

api_key = os.getenv("COMPOSIO_API_KEY")
user_id = os.getenv("USER_ID")

if not api_key:
    raise RuntimeError("COMPOSIO_API_KEY is not set. Create a .env file with COMPOSIO_API_KEY=your_key")

# Initialize Composio
composio = Composio(api_key=api_key, provider=OpenAIAgentsProvider())
What's happening:
  • load_dotenv() loads your .env file so OPENAI_API_KEY and COMPOSIO_API_KEY are available as environment variables.
  • Creating a Composio instance using the API Key and OpenAIAgentsProvider class.

Create a Tool Router session

# Create a Affinda Tool Router session
session = composio.create(
    user_id=user_id,
    toolkits=["affinda"]
)

mcp_url = session.mcp.url

What is happening:

  • You give the Tool Router the user id and the toolkits you want available. Here, it is only affinda.
  • The router checks the user's Affinda connection and prepares the MCP endpoint.
  • The returned session.mcp.url is the MCP URL that your agent will use to access Affinda.
  • This approach keeps things lightweight and lets the agent request Affinda tools only when needed during the conversation.

Configure the agent

# Configure agent with MCP tool
agent = Agent(
    name="Assistant",
    model="gpt-5",
    instructions=(
        "You are a helpful assistant that can access Affinda. "
        "Help users perform Affinda operations through natural language."
    ),
    tools=[
        HostedMCPTool(
            tool_config={
                "type": "mcp",
                "server_label": "tool_router",
                "server_url": mcp_url,
                "headers": {"x-api-key": api_key},
                "require_approval": "never",
            }
        )
    ],
)
What's happening:
  • We're creating an Agent instance with a name, model (gpt-5), and clear instructions about its purpose.
  • The agent's instructions tell it that it can access Affinda and help with queries, inserts, updates, authentication, and fetching database information.
  • The tools array includes a HostedMCPTool that connects to the MCP server URL we created earlier.
  • The headers dict includes the Composio API key for secure authentication with the MCP server.
  • require_approval: 'never' means the agent can execute Affinda operations without asking for permission each time, making interactions smoother.

Start chat loop and handle conversation

print("\nComposio Tool Router session created.")

chat_session = SQLiteSession("conversation_openai_toolrouter")

print("\nChat started. Type your requests below.")
print("Commands: 'exit', 'quit', or 'q' to end\n")

async def main():
    try:
        result = await Runner.run(
            agent,
            "What can you help me with?",
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")
    except Exception as e:
        print(f"Error: {e}\n")

    while True:
        user_input = input("You: ").strip()
        if user_input.lower() in {"exit", "quit", "q"}:
            print("Goodbye!")
            break

        result = await Runner.run(
            agent,
            user_input,
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")

asyncio.run(main())
What's happening:
  • The program prints a session URL that you visit to authorize Affinda.
  • After authorization, the chat begins.
  • Each message you type is processed by the agent using Runner.run().
  • The responses are printed to the console, and conversations are saved locally using SQLite.
  • Typing exit, quit, or q cleanly ends the chat.

Complete Code

Here's the complete code to get you started with Affinda and open-ai-agents-sdk:

import asyncio
import os
from dotenv import load_dotenv

from composio import Composio
from composio_openai_agents import OpenAIAgentsProvider
from agents import Agent, Runner, HostedMCPTool, SQLiteSession

load_dotenv()

api_key = os.getenv("COMPOSIO_API_KEY")
user_id = os.getenv("USER_ID")

if not api_key:
    raise RuntimeError("COMPOSIO_API_KEY is not set. Create a .env file with COMPOSIO_API_KEY=your_key")

# Initialize Composio
composio = Composio(api_key=api_key, provider=OpenAIAgentsProvider())

# Create Tool Router session
session = composio.create(
    user_id=user_id,
    toolkits=["affinda"]
)
mcp_url = session.mcp.url

# Configure agent with MCP tool
agent = Agent(
    name="Assistant",
    model="gpt-5",
    instructions=(
        "You are a helpful assistant that can access Affinda. "
        "Help users perform Affinda operations through natural language."
    ),
    tools=[
        HostedMCPTool(
            tool_config={
                "type": "mcp",
                "server_label": "tool_router",
                "server_url": mcp_url,
                "headers": {"x-api-key": api_key},
                "require_approval": "never",
            }
        )
    ],
)

print("\nComposio Tool Router session created.")

chat_session = SQLiteSession("conversation_openai_toolrouter")

print("\nChat started. Type your requests below.")
print("Commands: 'exit', 'quit', or 'q' to end\n")

async def main():
    try:
        result = await Runner.run(
            agent,
            "What can you help me with?",
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")
    except Exception as e:
        print(f"Error: {e}\n")

    while True:
        user_input = input("You: ").strip()
        if user_input.lower() in {"exit", "quit", "q"}:
            print("Goodbye!")
            break

        result = await Runner.run(
            agent,
            user_input,
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")

asyncio.run(main())

Conclusion

This was a starter code for integrating Affinda MCP with OpenAI Agents SDK to build a functional AI agent that can interact with Affinda.

Key features:

  • Hosted MCP tool integration through Composio's Tool Router
  • SQLite session persistence for conversation history
  • Simple async chat loop for interactive testing
You can extend this by adding more toolkits, implementing custom business logic, or building a web interface around the agent.

How to build Affinda MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Affinda MCP?

With a standalone Affinda MCP server, the agents and LLMs can only access a fixed set of Affinda tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Affinda and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with OpenAI Agents SDK?

Yes, you can. OpenAI Agents SDK fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Affinda tools.

Can I manage the permissions and scopes for Affinda while using Tool Router?

Yes, absolutely. You can configure which Affinda scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Affinda data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.