How to integrate Affinda MCP with CrewAI

Framework Integration Gradient
Affinda Logo
CrewAI Logo
divider

Introduction

This guide walks you through connecting Affinda to CrewAI using the Composio tool router. By the end, you'll have a working Affinda agent that can extract invoice data from uploaded pdf, delete a document no longer needed, create a new tag for hr documents, set up webhook for document parsing events through natural language commands.

This guide will help you understand how to give your CrewAI agent real control over a Affinda account through Composio's Affinda MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get a Composio API key and configure your Affinda connection
  • Set up CrewAI with an MCP enabled agent
  • Create a Tool Router session or standalone MCP server for Affinda
  • Build a conversational loop where your agent can execute Affinda operations

What is CrewAI?

CrewAI is a powerful framework for building multi-agent AI systems. It provides primitives for defining agents with specific roles, creating tasks, and orchestrating workflows through crews.

Key features include:

  • Agent Roles: Define specialized agents with specific goals and backstories
  • Task Management: Create tasks with clear descriptions and expected outputs
  • Crew Orchestration: Combine agents and tasks into collaborative workflows
  • MCP Integration: Connect to external tools through Model Context Protocol

What is the Affinda MCP server, and what's possible with it?

The Affinda MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Affinda account. It provides structured and secure access to your document processing workflows, so your agent can upload files, extract data, organize workspaces, label documents, and automate annotation management on your behalf.

  • AI-powered document upload and extraction: Instantly have your agent upload new documents for parsing and extract structured data from various formats using Affinda's advanced AI models.
  • Workspace and collection management: Let your agent create, group, and organize documents into collections and workspaces, keeping your document processing streamlined and organized.
  • Automated annotation updates: Empower your agent to batch update or modify multiple document annotations in a single request, saving you time on manual corrections.
  • Document tagging and organization: Direct your agent to create tags and label documents, making it easy to categorize and quickly retrieve important files.
  • Effortless cleanup and resource management: Have your agent delete unwanted documents or collections, ensuring your Affinda account stays tidy and relevant at all times.

Supported Tools & Triggers

Tools
Batch Update AnnotationsTool to update multiple annotations in one request.
Create CollectionTool to create a new collection.
Create DocumentTool to upload a new document for parsing.
Create OrganizationTool to create a new organization.
Create RESTHook SubscriptionTool to create a new resthook subscription.
Create TagTool to create a new tag.
Create Validation ResultTool to create a validation result.
Create WorkspaceTool to create a new workspace.
Delete CollectionTool to delete a specific collection by its id.
Delete DocumentTool to delete a specific document by its id.
Delete OrganizationTool to delete a specific organization by its id.
Delete Resthook SubscriptionTool to delete a specific resthook subscription by id.
Delete WorkspaceTool to delete a specific workspace by its id.
Delete Workspace MembershipTool to remove a user from a workspace by membership id.
Get TagsTool to list all tags.
Get All Validation ResultsTool to list validation results for documents.
Get Workspace MembershipsTool to list all workspace memberships for the authenticated user.
Get AnnotationsTool to retrieve a list of all annotations.
Get CollectionTool to retrieve details of a specific collection by its id.
Get CollectionsTool to retrieve a list of all collections.
Get DocumentTool to retrieve details of a specific document by its id.
Get DocumentsTool to retrieve a list of all documents.
Get Document TypeTool to retrieve details of a specific document type by its id.
Get Document TypesTool to retrieve a list of all document types.
Get ExtractorsTool to retrieve a list of all extractors.
Get OrganizationTool to retrieve details of a specific organization by its id.
Get OrganizationsTool to retrieve a list of all organizations.
Get Resthook SubscriptionTool to retrieve details of a specific resthook subscription by its id.
Get RESTHook SubscriptionsTool to retrieve a list of all resthook subscriptions.
Get Usage by WorkspaceTool to retrieve monthly credits consumption for a workspace.
Get WorkspaceTool to retrieve details of a specific workspace by its id.
Get Workspace MembershipTool to retrieve details of a specific workspace membership by its id.
Get WorkspacesTool to retrieve a list of all workspaces.
Update CollectionTool to update specific fields of a collection.
Update DocumentTool to update specific fields of a document.
Update Document DataTool to update parsed data for a resume or job description document.
Update OrganizationTool to update specific fields of an organization.
Update RESTHook SubscriptionTool to update an existing resthook subscription.
Update WorkspaceTool to update specific fields of a workspace.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Python 3.9 or higher
  • A Composio account and API key
  • A Affinda connection authorized in Composio
  • An OpenAI API key for the CrewAI LLM
  • Basic familiarity with Python

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

bash
pip install composio crewai crewai-tools python-dotenv
What's happening:
  • composio connects your agent to Affinda via MCP
  • crewai provides Agent, Task, Crew, and LLM primitives
  • crewai-tools includes MCP helpers
  • python-dotenv loads environment variables from .env

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
USER_ID=your_user_id_here
OPENAI_API_KEY=your_openai_api_key_here

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates with Composio
  • USER_ID scopes the session to your account
  • OPENAI_API_KEY lets CrewAI use your chosen OpenAI model

Import dependencies

python
from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter  # optional import if you plan to adapt tools
from composio import Composio
from dotenv import load_dotenv
import os
from crewai.mcp import MCPServerHTTP

load_dotenv()
What's happening:
  • CrewAI classes define agents and tasks, and run the workflow
  • MCPServerHTTP connects the agent to an MCP endpoint
  • Composio will give you a short lived Affinda MCP URL

Create a Composio Tool Router session for Affinda

python
composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
session = composio.create(
    user_id=os.getenv("USER_ID"),
    toolkits=["affinda"],
)
url = session.mcp.url
What's happening:
  • You create a Affinda only session through Composio
  • Composio returns an MCP HTTP URL that exposes Affinda tools

Configure the LLM

python
llm = LLM(
    model="gpt-5-mini",
    api_key=os.getenv("OPENAI_API_KEY"),
)
What's happening:
  • CrewAI will call this LLM for planning and responses
  • You can swap in a different model if needed

Attach the MCP server and create the agent

python
toolkit_agent = Agent(
    role="Affinda Assistant",
    goal="Help users interact with Affinda through natural language commands",
    backstory=(
        "You are an expert assistant with access to Affinda tools. "
        "You can perform various Affinda operations on behalf of the user."
    ),
    mcps=[
        MCPServerHTTP(
            url=url,
            streamable=True,
            cache_tools_list=True,
            headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")},
        ),
    ],
    llm=llm,
    verbose=True,
    max_iter=10,
)
What's happening:
  • MCPServerHTTP connects the agent to the Affinda MCP endpoint
  • cache_tools_list saves a tools catalog for faster subsequent runs
  • verbose helps you see what the agent is doing

Add a REPL loop with Task and Crew

python
print("Chat started! Type 'exit' or 'quit' to end.\n")
print("Try asking the agent to perform Affinda operations.\n")

conversation_context = ""

while True:
    user_input = input("You: ").strip()

    if user_input.lower() in ["exit", "quit", "bye"]:
        print("\nGoodbye!")
        break

    if not user_input:
        continue

    conversation_context += f"\nUser: {user_input}\n"
    print("\nAgent is thinking...\n")

    task = Task(
        description=(
            f"Based on the conversation history:\n{conversation_context}\n\n"
            f"Current user request: {user_input}\n\n"
            f"Please help the user with their Affinda related request."
        ),
        expected_output="A helpful response addressing the user's request",
        agent=toolkit_agent,
    )

    crew = Crew(
        agents=[toolkit_agent],
        tasks=[task],
        verbose=False,
    )

    result = crew.kickoff()
    response = str(result)

    conversation_context += f"Agent: {response}\n"
    print(f"Agent: {response}\n")
What's happening:
  • You build a simple chat loop and keep a running context
  • Each user turn becomes a Task handled by the same agent
  • Crew executes the task and returns a response

Run the application

python
if __name__ == "__main__":
    main()
What's happening:
  • Standard Python entry point so you can run python crewai_affinda_agent.py

Complete Code

Here's the complete code to get you started with Affinda and CrewAI:

python
# file: crewai_affinda_agent.py
from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter  # optional
from composio import Composio
from dotenv import load_dotenv
import os
from crewai.mcp import MCPServerHTTP

load_dotenv()

def main():
    # Initialize Composio and create a Affinda session
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
    session = composio.create(
        user_id=os.getenv("USER_ID"),
        toolkits=["affinda"],
    )
    url = session.mcp.url

    # Configure LLM
    llm = LLM(
        model="gpt-5-mini",
        api_key=os.getenv("OPENAI_API_KEY"),
    )

    # Create Affinda assistant agent
    toolkit_agent = Agent(
        role="Affinda Assistant",
        goal="Help users interact with Affinda through natural language commands",
        backstory=(
            "You are an expert assistant with access to Affinda tools. "
            "You can perform various Affinda operations on behalf of the user."
        ),
        mcps=[
            MCPServerHTTP(
                url=url,
                streamable=True,
                cache_tools_list=True,
                headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")},
            ),
        ],
        llm=llm,
        verbose=True,
        max_iter=10,
    )

    print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
    print("Try asking the agent to perform Affinda operations.\n")

    conversation_context = ""

    while True:
        user_input = input("You: ").strip()

        if user_input.lower() in ["exit", "quit", "bye"]:
            print("\nGoodbye!")
            break

        if not user_input:
            continue

        conversation_context += f"\nUser: {user_input}\n"
        print("\nAgent is thinking...\n")

        task = Task(
            description=(
                f"Based on the conversation history:\n{conversation_context}\n\n"
                f"Current user request: {user_input}\n\n"
                f"Please help the user with their Affinda related request."
            ),
            expected_output="A helpful response addressing the user's request",
            agent=toolkit_agent,
        )

        crew = Crew(
            agents=[toolkit_agent],
            tasks=[task],
            verbose=False,
        )

        result = crew.kickoff()
        response = str(result)

        conversation_context += f"Agent: {response}\n"
        print(f"Agent: {response}\n")

if __name__ == "__main__":
    main()

Conclusion

You now have a CrewAI agent connected to Affinda through Composio's Tool Router. The agent can perform Affinda operations through natural language commands. Next steps:
  • Add role-specific instructions to customize agent behavior
  • Plug in more toolkits for multi-app workflows
  • Chain tasks for complex multi-step operations

How to build Affinda MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Affinda MCP?

With a standalone Affinda MCP server, the agents and LLMs can only access a fixed set of Affinda tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Affinda and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with CrewAI?

Yes, you can. CrewAI fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Affinda tools.

Can I manage the permissions and scopes for Affinda while using Tool Router?

Yes, absolutely. You can configure which Affinda scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Affinda data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.