How to integrate Repairshopr MCP with OpenAI Agents SDK

Framework Integration Gradient
Repairshopr Logo
open-ai-agents-sdk Logo
divider

Introduction

This guide walks you through connecting Repairshopr to the OpenAI Agents SDK using the Composio tool router. By the end, you'll have a working Repairshopr agent that can list all upcoming appointments for today, fetch all assets linked to a customer, show attachments for a specific service case, delete an invoice by its unique id through natural language commands.

This guide will help you understand how to give your OpenAI Agents SDK agent real control over a Repairshopr account through Composio's Repairshopr MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get and set up your OpenAI and Composio API keys
  • Install the necessary dependencies
  • Initialize Composio and create a Tool Router session for Repairshopr
  • Configure an AI agent that can use Repairshopr as a tool
  • Run a live chat session where you can ask the agent to perform Repairshopr operations

What is open-ai-agents-sdk?

The OpenAI Agents SDK is a lightweight framework for building AI agents that can use tools and maintain conversation state. It provides a simple interface for creating agents with hosted MCP tool support.

Key features include:

  • Hosted MCP Tools: Connect to external services through hosted MCP endpoints
  • SQLite Sessions: Persist conversation history across interactions
  • Simple API: Clean interface with Agent, Runner, and tool configuration
  • Streaming Support: Real-time response streaming for interactive applications

What is the Repairshopr MCP server, and what's possible with it?

The Repairshopr MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Repairshopr account. It provides structured and secure access to your repair shop management system, so your agent can perform actions like managing customer records, handling appointments, viewing assets, retrieving attachments, and organizing contacts on your behalf.

  • Effortless appointment management: Instantly retrieve details of specific appointments, get upcoming schedules, or delete canceled slots directly through your agent.
  • Comprehensive customer and contact handling: Let your agent fetch lists of customers or contacts, update records, or permanently remove outdated customer information for streamlined CRM workflows.
  • Asset tracking and lookup: Quickly search for assets, confirm asset details, or filter assets by customer or status, making it easy to keep tabs on all equipment under management.
  • Service case and attachment retrieval: Have your agent pull all attachments linked to a specific service case, ensuring quick access to important files and documentation.
  • Estimate and invoice cleanup: Empower your agent to delete estimates or invoices that are no longer needed, helping you maintain a tidy, organized business record system.

Supported Tools & Triggers

Tools
Delete AppointmentTool to delete a specific appointment by its id.
Delete CustomerTool to delete a specific customer by id.
Delete EstimateTool to delete a specific estimate by id.
Delete InvoiceTool to delete a specific invoice by id.
Get AppointmentTool to retrieve details of a specific appointment by its id.
Get AppointmentsTool to retrieve a list of appointments.
Get AssetTool to retrieve details of a specific asset by its id.
Get AssetsTool to retrieve a paginated list of assets.
Get Case AttachmentsTool to retrieve attachments for a specific service case.
Get ContactsTool to retrieve a paginated list of contacts.
Get CustomerTool to retrieve details of a specific customer by id.
Get CustomersTool to retrieve a list of customers.
Get Employee Time ClockTool to retrieve the last time clock entry for a specific user.
Get EstimateTool to retrieve details of a specific estimate by id.
Get EstimatesTool to retrieve a list of estimates.
Get InvoiceTool to retrieve details of a specific invoice by id.
Get InvoicesTool to retrieve a paginated list of invoices.
Get LeadTool to retrieve details of a specific lead by its id.
Get LeadsTool to retrieve a paginated list of leads.
Get PaymentTool to retrieve details of a specific payment by id.
Get PaymentsTool to retrieve a paginated list of payments.
Get ProductTool to retrieve details of a specific product by id.
Get ProductsTool to retrieve a list of products.
Get Products By CategoryTool to retrieve products filtered by category id.
Get Product CategoriesTool to retrieve product categories.
Get Product SerialsTool to retrieve all serial numbers for a specific product.
Get TicketTool to retrieve details of a specific ticket by its id.
Get UserTool to retrieve details of a specific user by id.
Get UsersTool to retrieve a list of all users.
Create AppointmentTool to create a new appointment.
Create AssetTool to create a new asset.
Create CustomerTool to create a new customer.
Create EstimateTool to create a new estimate.
Create InvoiceTool to create a new invoice.
Create LeadTool to create a new lead.
Create PaymentTool to create a new payment.
Create ProductTool to create a new product in inventory.
Add Product PhotoTool to add photo(s) to a specific product.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Composio API Key and OpenAI API Key
  • Primary know-how of OpenAI Agents SDK
  • A live Repairshopr project
  • Some knowledge of Python or Typescript

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key

Install dependencies

pip install composio_openai_agents openai-agents python-dotenv

Install the Composio SDK and the OpenAI Agents SDK.

Set up environment variables

bash
OPENAI_API_KEY=sk-...your-api-key
COMPOSIO_API_KEY=your-api-key
USER_ID=composio_user@gmail.com

Create a .env file and add your OpenAI and Composio API keys.

Import dependencies

import asyncio
import os
from dotenv import load_dotenv

from composio import Composio
from composio_openai_agents import OpenAIAgentsProvider
from agents import Agent, Runner, HostedMCPTool, SQLiteSession
What's happening:
  • You're importing all necessary libraries.
  • The Composio and OpenAIAgentsProvider classes are imported to connect your OpenAI agent to Composio tools like Repairshopr.

Set up the Composio instance

load_dotenv()

api_key = os.getenv("COMPOSIO_API_KEY")
user_id = os.getenv("USER_ID")

if not api_key:
    raise RuntimeError("COMPOSIO_API_KEY is not set. Create a .env file with COMPOSIO_API_KEY=your_key")

# Initialize Composio
composio = Composio(api_key=api_key, provider=OpenAIAgentsProvider())
What's happening:
  • load_dotenv() loads your .env file so OPENAI_API_KEY and COMPOSIO_API_KEY are available as environment variables.
  • Creating a Composio instance using the API Key and OpenAIAgentsProvider class.

Create a Tool Router session

# Create a Repairshopr Tool Router session
session = composio.create(
    user_id=user_id,
    toolkits=["repairshopr"]
)

mcp_url = session.mcp.url

What is happening:

  • You give the Tool Router the user id and the toolkits you want available. Here, it is only repairshopr.
  • The router checks the user's Repairshopr connection and prepares the MCP endpoint.
  • The returned session.mcp.url is the MCP URL that your agent will use to access Repairshopr.
  • This approach keeps things lightweight and lets the agent request Repairshopr tools only when needed during the conversation.

Configure the agent

# Configure agent with MCP tool
agent = Agent(
    name="Assistant",
    model="gpt-5",
    instructions=(
        "You are a helpful assistant that can access Repairshopr. "
        "Help users perform Repairshopr operations through natural language."
    ),
    tools=[
        HostedMCPTool(
            tool_config={
                "type": "mcp",
                "server_label": "tool_router",
                "server_url": mcp_url,
                "headers": {"x-api-key": api_key},
                "require_approval": "never",
            }
        )
    ],
)
What's happening:
  • We're creating an Agent instance with a name, model (gpt-5), and clear instructions about its purpose.
  • The agent's instructions tell it that it can access Repairshopr and help with queries, inserts, updates, authentication, and fetching database information.
  • The tools array includes a HostedMCPTool that connects to the MCP server URL we created earlier.
  • The headers dict includes the Composio API key for secure authentication with the MCP server.
  • require_approval: 'never' means the agent can execute Repairshopr operations without asking for permission each time, making interactions smoother.

Start chat loop and handle conversation

print("\nComposio Tool Router session created.")

chat_session = SQLiteSession("conversation_openai_toolrouter")

print("\nChat started. Type your requests below.")
print("Commands: 'exit', 'quit', or 'q' to end\n")

async def main():
    try:
        result = await Runner.run(
            agent,
            "What can you help me with?",
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")
    except Exception as e:
        print(f"Error: {e}\n")

    while True:
        user_input = input("You: ").strip()
        if user_input.lower() in {"exit", "quit", "q"}:
            print("Goodbye!")
            break

        result = await Runner.run(
            agent,
            user_input,
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")

asyncio.run(main())
What's happening:
  • The program prints a session URL that you visit to authorize Repairshopr.
  • After authorization, the chat begins.
  • Each message you type is processed by the agent using Runner.run().
  • The responses are printed to the console, and conversations are saved locally using SQLite.
  • Typing exit, quit, or q cleanly ends the chat.

Complete Code

Here's the complete code to get you started with Repairshopr and open-ai-agents-sdk:

import asyncio
import os
from dotenv import load_dotenv

from composio import Composio
from composio_openai_agents import OpenAIAgentsProvider
from agents import Agent, Runner, HostedMCPTool, SQLiteSession

load_dotenv()

api_key = os.getenv("COMPOSIO_API_KEY")
user_id = os.getenv("USER_ID")

if not api_key:
    raise RuntimeError("COMPOSIO_API_KEY is not set. Create a .env file with COMPOSIO_API_KEY=your_key")

# Initialize Composio
composio = Composio(api_key=api_key, provider=OpenAIAgentsProvider())

# Create Tool Router session
session = composio.create(
    user_id=user_id,
    toolkits=["repairshopr"]
)
mcp_url = session.mcp.url

# Configure agent with MCP tool
agent = Agent(
    name="Assistant",
    model="gpt-5",
    instructions=(
        "You are a helpful assistant that can access Repairshopr. "
        "Help users perform Repairshopr operations through natural language."
    ),
    tools=[
        HostedMCPTool(
            tool_config={
                "type": "mcp",
                "server_label": "tool_router",
                "server_url": mcp_url,
                "headers": {"x-api-key": api_key},
                "require_approval": "never",
            }
        )
    ],
)

print("\nComposio Tool Router session created.")

chat_session = SQLiteSession("conversation_openai_toolrouter")

print("\nChat started. Type your requests below.")
print("Commands: 'exit', 'quit', or 'q' to end\n")

async def main():
    try:
        result = await Runner.run(
            agent,
            "What can you help me with?",
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")
    except Exception as e:
        print(f"Error: {e}\n")

    while True:
        user_input = input("You: ").strip()
        if user_input.lower() in {"exit", "quit", "q"}:
            print("Goodbye!")
            break

        result = await Runner.run(
            agent,
            user_input,
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")

asyncio.run(main())

Conclusion

This was a starter code for integrating Repairshopr MCP with OpenAI Agents SDK to build a functional AI agent that can interact with Repairshopr.

Key features:

  • Hosted MCP tool integration through Composio's Tool Router
  • SQLite session persistence for conversation history
  • Simple async chat loop for interactive testing
You can extend this by adding more toolkits, implementing custom business logic, or building a web interface around the agent.

How to build Repairshopr MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Repairshopr MCP?

With a standalone Repairshopr MCP server, the agents and LLMs can only access a fixed set of Repairshopr tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Repairshopr and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with OpenAI Agents SDK?

Yes, you can. OpenAI Agents SDK fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Repairshopr tools.

Can I manage the permissions and scopes for Repairshopr while using Tool Router?

Yes, absolutely. You can configure which Repairshopr scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Repairshopr data and credentials are handled as safely as possible.

Used by agents from

Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.