How to integrate Mem0 MCP with Google ADK

Framework Integration Gradient
Mem0 Logo
Google ADK Logo
divider

Introduction

This guide walks you through connecting Mem0 to Google ADK using the Composio tool router. By the end, you'll have a working Mem0 agent that can store meeting notes from today's call, export all project memories as csv, add new user to our team space, search recent notes mentioning quarterly goals through natural language commands.

This guide will help you understand how to give your Google ADK agent real control over a Mem0 account through Composio's Mem0 MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get a Mem0 account set up and connected to Composio
  • Install the Google ADK and Composio packages
  • Create a Composio Tool Router session for Mem0
  • Build an agent that connects to Mem0 through MCP
  • Interact with Mem0 using natural language

What is Google ADK?

Google ADK (Agents Development Kit) is Google's framework for building AI agents powered by Gemini models. It provides tools for creating agents that can use external services through the Model Context Protocol.

Key features include:

  • Gemini Integration: Native support for Google's Gemini models
  • MCP Toolset: Built-in support for Model Context Protocol tools
  • Streamable HTTP: Connect to external services through streamable HTTP
  • CLI and Web UI: Run agents via command line or web interface

What is the Mem0 MCP server, and what's possible with it?

The Mem0 MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Mem0 account. It provides structured and secure access to your notes, projects, and organizational knowledge, so your agent can perform actions like searching memories, managing users, adding content, and orchestrating agent runs on your behalf.

  • AI-powered memory search and recall: Let your agent search and retrieve existing memory entries using advanced filters and pagination to surface just the right note or piece of information.
  • Automated content and note creation: Have your agent store new memory records from conversations, meetings, or tasks—ensuring nothing slips through the cracks.
  • Collaboration and organization management: Direct your agent to add members to projects or organizations, assign roles, and keep team structures up to date.
  • Agent and application orchestration: Enable your agent to create new AI agents, initiate agent runs, and manage applications for custom workflows and automation.
  • Structured knowledge export and reporting: Ask your agent to initiate export jobs with specific schemas and filters, so you can back up or analyze your stored knowledge on demand.

Supported Tools & Triggers

Tools
Add member to projectAdds an existing user to a project (identified by `project id` within organization `org id`), assigning a valid system role.
Add new memory recordsStores new memory records from a list of messages, optionally inferring structured content; requires association via `agent id`, `user id`, `app id`, or `run id`.
Add organization memberAdds a new member, who must be a registered user, to an organization, assigning them a specific role.
Create a new agentCreates a new agent with a unique `agent id` and an optional `name`; additional metadata may be assigned by the system.
Create a new agent runCreates a new agent run in the mem0.
Create a new applicationCreates a new application, allowing metadata to be passed in the request body (not an explicit field in this action's request model); ensure `app id` is unique to avoid potential errors or unintended updates.
Create a new organization entryCreates a new organization entry using the provided name and returns its details.
Create a new userCreates a new user with the specified unique `user id` and supports associating `metadata` (not part of the request schema fields).
Create an export job with schemaInitiates an asynchronous job to export memories, structured by a schema provided in the request body and allowing optional filters.
Create memory entryLists/searches existing memory entries with filtering and pagination; critically, this action retrieves memories and does *not* create new ones, despite its name.
Create projectCreates a new project with a given name within an organization that must already exist.
Delete an organizationPermanently deletes an existing organization identified by its unique id.
Delete memory by idPermanently deletes a specific memory by its unique id; ensure the `memory id` exists as this operation is irreversible.
Delete entity by type and idCall to permanently and irreversibly hard-delete an existing entity (user, agent, app, or run) and all its associated data, using its type and id.
Delete memoriesDeletes memories matching specified filter criteria; omitting all filters may result in deleting all memories.
Delete memory batch with uuidsDeletes a batch of up to 1000 existing memories, identified by their uuids, in a single api call.
Delete projectPermanently deletes a specific project and all its associated data from an organization; this action cannot be undone and requires the project to exist within the specified organization.
Delete project memberRemoves an existing member, specified by username, from a project, immediately revoking their project-specific access; the user is not removed from the organization.
Export data based on filtersRetrieves memory export data, optionally filtered by various identifiers (e.
List organizationsRetrieves a summary list of organizations for administrative oversight; returns summary data (names, ids), not exhaustive details, despite 'detailed' in the name.
Fetch details of a specific organizationFetches comprehensive details for an organization using its `org id`; the `org id` must be valid and for an existing organization.
Get list of entity filtersRetrieves predefined filter definitions for entities (e.
Get entity by idFetches detailed information for an existing entity (user, agent, app, or run) identified by its type and unique id.
Get organization membersFetches a list of members for a specified, existing organization.
Get project detailsFetches comprehensive details for a specified project within an organization.
Get project membersRetrieves all members for a specified project within an organization.
Get projectsRetrieves all projects for a given organization `org id` to which the caller has access.
Get user memory statsRetrieves a summary of the authenticated user's memory activity, including total memories created, search events, and add events.
List entitiesRetrieves a list of entities, optionally filtered by organization or project (prefer `org id`/`project id` over deprecated `org name`/`project name`), noting results may be summaries and subject to limits.
Perform semantic search on memoriesSearches memories semantically using a natural language query (required if `only metadata based search` is false) and/or metadata filters.
Remove a member from the organizationRemoves a member, specified by their username, from an existing organization of which they are currently a member.
Retrieve all events for the currently logged in userRetrieves a paginated list of events for the authenticated user, filterable and paginable via url query parameters.
Retrieve entity-specific memoriesRetrieves all memories (e.
Retrieve list of memory eventsRetrieves a chronological list of all memory events (e.
Retrieve memory by idRetrieves a complete memory entry by its unique identifier; `memory id` must be valid and for an existing memory.
Retrieve memory history by idRetrieves the complete version history for an existing memory, using its unique `memory id`, to inspect its evolution or audit changes.
Retrieve memory listRetrieves a list of memories, supporting pagination and diverse filtering (e.
Search memories with filtersSemantically searches memories using a natural language query and mandatory structured filters, offering options to rerank results and select specific fields; any provided `org id` or `project id` must reference a valid existing entity.
Update memory batch with uuidUpdates text for up to 1000 memories in a single batch, using their uuids.
Update memory text contentUpdates the text content of an existing memory, identified by its `memory id`.
Update organization member roleUpdates the role of an existing member to a new valid role within an existing organization.
Update projectUpdates a project by `project id` within an `org id`, modifying only provided fields (name, description, custom instructions, custom categories); list fields are fully replaced (cleared by `[]`), other omitted/null fields remain unchanged.
Update project member roleUpdates the role of a specific member within a designated project, ensuring the new role is valid and recognized by the system.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • A Google API key for Gemini models
  • A Composio account and API key
  • Python 3.9 or later installed
  • Basic familiarity with Python

Getting API Keys for Google and Composio

Google API Key
  • Go to Google AI Studio and create an API key.
  • Copy the key and keep it safe. You will put this in GOOGLE_API_KEY.
Composio API Key and User ID
  • Log in to the Composio dashboard.
  • Go to Settings → API Keys and copy your Composio API key. Use this for COMPOSIO_API_KEY.
  • Decide on a stable user identifier to scope sessions, often your email or a user ID. Use this for COMPOSIO_USER_ID.

Install dependencies

bash
pip install google-adk composio-google python-dotenv

Inside your virtual environment, install the required packages.

What's happening:

  • google-adk is Google's Agents Development Kit
  • composio connects your agent to Mem0 via MCP
  • composio-google provides the Google ADK provider
  • python-dotenv loads environment variables

Set up ADK project

bash
adk create my_agent

Set up a new Google ADK project.

What's happening:

  • This creates an agent folder with a root agent file and .env file

Set environment variables

bash
GOOGLE_API_KEY=your-google-api-key
COMPOSIO_API_KEY=your-composio-api-key
COMPOSIO_USER_ID=your-user-id-or-email

Save all your credentials in the .env file.

What's happening:

  • GOOGLE_API_KEY authenticates with Google's Gemini models
  • COMPOSIO_API_KEY authenticates with Composio
  • COMPOSIO_USER_ID identifies the user for session management

Import modules and validate environment

python
import os
import warnings

from composio import Composio
from composio_google import GoogleProvider
from dotenv import load_dotenv
from google.adk.agents.llm_agent import Agent
from google.adk.tools.mcp_tool.mcp_session_manager import StreamableHTTPConnectionParams
from google.adk.tools.mcp_tool.mcp_toolset import McpToolset

load_dotenv()

warnings.filterwarnings("ignore", message=".*BaseAuthenticatedTool.*")

GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
COMPOSIO_API_KEY = os.getenv("COMPOSIO_API_KEY")
COMPOSIO_USER_ID = os.getenv("COMPOSIO_USER_ID")

if not GOOGLE_API_KEY:
    raise ValueError("GOOGLE_API_KEY is not set in the environment.")
if not COMPOSIO_API_KEY:
    raise ValueError("COMPOSIO_API_KEY is not set in the environment.")
if not COMPOSIO_USER_ID:
    raise ValueError("COMPOSIO_USER_ID is not set in the environment.")
What's happening:
  • os reads environment variables
  • Composio is the main Composio SDK client
  • GoogleProvider declares that you are using Google ADK as the agent runtime
  • Agent is the Google ADK LLM agent class
  • McpToolset lets the ADK agent call MCP tools over HTTP

Create Composio client and Tool Router session

python
print("Initializing Composio client...")
composio_client = Composio(api_key=COMPOSIO_API_KEY, provider=GoogleProvider())

print("Creating Composio session...")
composio_session = composio_client.create(
    user_id=COMPOSIO_USER_ID,
    toolkits=["mem0"],
)

COMPOSIO_MCP_URL = composio_session.mcp.url
print(f"Composio MCP HTTP URL: {COMPOSIO_MCP_URL}")
What's happening:
  • Authenticates to Composio with your API key
  • Declares Google ADK as the provider
  • Spins up a short-lived MCP endpoint for your user and selected toolkit
  • Stores the MCP HTTP URL for the ADK MCP integration

Set up the McpToolset and create the Agent

python
print("Creating Composio toolset for the agent...")
composio_toolset = McpToolset(
    connection_params=StreamableHTTPConnectionParams(
        url=COMPOSIO_MCP_URL,
        headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")}
    )
)

root_agent = Agent(
    model="gemini-2.5-pro",
    name="composio_agent",
    description="An agent that uses Mem0 tools to perform actions.",
    instruction=(
        "You are a helpful assistant connected to Composio. "
        "You have the following tools available: "
        "COMPOSIO_SEARCH_TOOLS, COMPOSIO_MULTI_EXECUTE_TOOL, "
        "COMPOSIO_MANAGE_CONNECTIONS, COMPOSIO_REMOTE_BASH_TOOL, COMPOSIO_REMOTE_WORKBENCH. "
        "Use these tools to help users with Mem0 operations."
    ),
    tools=[composio_toolset],
)

print("\nAgent setup complete. You can now run this agent directly ;)")
What's happening:
  • Connects the ADK agent to the Composio MCP endpoint through McpToolset
  • Uses Gemini as the model powering the agent
  • Lists exact tool names in instruction to reduce misnamed tool calls

Run the agent

bash
# Run in CLI mode
adk run my_agent

# Or run in web UI mode
adk web
Execute the agent from the project root. The web command opens a web portal where you can chat with the agent. What's happening:
  • adk run runs the agent in CLI mode
  • adk web opens a web UI for interactive testing

Complete Code

Here's the complete code to get you started with Mem0 and Google ADK:

python
import os
import warnings

from composio import Composio
from composio_google import GoogleProvider
from dotenv import load_dotenv
from google.adk.agents.llm_agent import Agent
from google.adk.tools.mcp_tool.mcp_session_manager import StreamableHTTPConnectionParams
from google.adk.tools.mcp_tool.mcp_toolset import McpToolset

def main():
    try:
        load_dotenv()

        warnings.filterwarnings("ignore", message=".*BaseAuthenticatedTool.*")

        GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
        COMPOSIO_API_KEY = os.getenv("COMPOSIO_API_KEY")
        COMPOSIO_USER_ID = os.getenv("COMPOSIO_USER_ID")

        if not GOOGLE_API_KEY:
            raise ValueError("GOOGLE_API_KEY is not set in the environment.")
        if not COMPOSIO_API_KEY:
            raise ValueError("COMPOSIO_API_KEY is not set in the environment.")
        if not COMPOSIO_USER_ID:
            raise ValueError("COMPOSIO_USER_ID is not set in the environment.")

        print("Initializing Composio client...")
        composio_client = Composio(api_key=COMPOSIO_API_KEY, provider=GoogleProvider())

        print("Creating Composio session...")
        composio_session = composio_client.create(
            user_id=COMPOSIO_USER_ID,
            toolkits=["mem0"],
        )

        COMPOSIO_MCP_URL = composio_session.mcp.url
        print(f"Composio MCP HTTP URL: {COMPOSIO_MCP_URL}")

        print("Creating Composio toolset for the agent...")
        composio_toolset = McpToolset(
            connection_params=StreamableHTTPConnectionParams(
                url=COMPOSIO_MCP_URL,
                headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")}
            )
        )

        root_agent = Agent(
            model="gemini-2.5-pro",
            name="composio_agent",
            description="An agent that uses Mem0 tools to perform actions.",
            instruction=(
                "You are a helpful assistant connected to Composio. "
                "You have the following tools available: "
                "COMPOSIO_SEARCH_TOOLS, COMPOSIO_MULTI_EXECUTE_TOOL, "
                "COMPOSIO_MANAGE_CONNECTIONS, COMPOSIO_REMOTE_BASH_TOOL, COMPOSIO_REMOTE_WORKBENCH. "
                "Use these tools to help users with Mem0 operations."
            ),
            tools=[composio_toolset],
        )

        print("\nAgent setup complete. You can now run this agent directly ;)")

    except Exception as e:
        print(f"\nAn error occurred during agent setup: {e}")

if __name__ == "__main__":
    main()

Conclusion

You've successfully integrated Mem0 with the Google ADK through Composio's MCP Tool Router. Your agent can now interact with Mem0 using natural language commands.

Key takeaways:

  • The Tool Router approach dynamically routes requests to the appropriate Mem0 tools
  • Environment variables keep your credentials secure and separate from code
  • Clear agent instructions reduce tool calling errors
  • The ADK web UI provides an interactive interface for testing and development

You can extend this setup by adding more toolkits to the toolkits array in your session configuration.

How to build Mem0 MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Mem0 MCP?

With a standalone Mem0 MCP server, the agents and LLMs can only access a fixed set of Mem0 tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Mem0 and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with Google ADK?

Yes, you can. Google ADK fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Mem0 tools.

Can I manage the permissions and scopes for Mem0 while using Tool Router?

Yes, absolutely. You can configure which Mem0 scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Mem0 data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.