How to integrate Linear MCP with LangChain

Framework Integration Gradient
Linear Logo
LangChain Logo
divider

Introduction

This guide walks you through connecting Linear to LangChain using the Composio tool router. By the end, you'll have a working Linear agent that can create a new bug for team mobile, add a comment to issue lin-123, list all cycles for the design team, download the latest attachment from issue lin-456 through natural language commands.

This guide will help you understand how to give your LangChain agent real control over a Linear account through Composio's Linear MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get and set up your OpenAI and Composio API keys
  • Connect your Linear project to Composio
  • Create a Tool Router MCP session for Linear
  • Initialize an MCP client and retrieve Linear tools
  • Build a LangChain agent that can interact with Linear
  • Set up an interactive chat interface for testing

What is LangChain?

LangChain is a framework for developing applications powered by language models. It provides tools and abstractions for building agents that can reason, use tools, and maintain conversation context.

Key features include:

  • Agent Framework: Build agents that can use tools and make decisions
  • MCP Integration: Connect to external services through Model Context Protocol adapters
  • Memory Management: Maintain conversation history across interactions
  • Multi-Provider Support: Works with OpenAI, Anthropic, and other LLM providers

What is the Linear MCP server, and what's possible with it?

The Linear MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Linear account. It provides structured and secure access to your team's issues, projects, and workflows, so your agent can perform actions like creating issues, posting comments, managing attachments, organizing teams, and automating project tracking on your behalf.

  • Automated issue creation and management: Instantly create new Linear issues, update existing ones, or archive issues to keep your team’s backlog organized and up to date.
  • Commenting and collaboration: Post comments on issues, facilitate team discussions, and keep everyone in the loop without manual effort.
  • Attachment handling: Add or download attachments to and from issues, making it easy to share files or reference important documents right from Linear.
  • Team and cycle insights: Retrieve all teams, fetch cycles (sprints) by team ID, and get default issue parameters to help your agent contextualize and optimize planning activities.
  • Personalized workspace access: Identify the current user, fetch their profile information, and tailor actions or queries to individual team members for smarter automation.

Supported Tools & Triggers

Tools
Triggers
Create linear attachmentCreates a new attachment and associates it with a specific, existing linear issue.
Create a commentCreates a new comment on a specified linear issue.
Create linear issueCreates a new issue in a specified linear project and team, requiring a title and description, and allowing for optional properties like assignee, state, priority, cycle, and due date.
Get create issue default paramsFetches a linear team's default issue estimate and state, useful for pre-filling new issue forms.
Create a labelCreates a new label in linear for a specified team, used to categorize and organize issues.
Delete issueArchives an existing linear issue by its id, which is linear's standard way of deleting issues; the operation is idempotent.
Get all teamsRetrieves all teams from the linear workspace without requiring any parameters.
Download issue attachmentsDownloads a specific attachment from a linear issue; the `file name` must include the correct file extension.
Get current userGets the currently authenticated user's id, name, email, and other profile information.
Get cycles by team IDRetrieves all cycles for a specified linear team id; cycles are time-boxed work periods (like sprints) and the team id must correspond to an existing team.
Get Linear issueRetrieves an existing linear issue's comprehensive details, including title, description, attachments, and comments.
Get all cyclesRetrieves all cycles (time-boxed iterations for work) from the linear account; no filters are applied.
List Linear issuesLists non-archived linear issues; if project id is not specified, issues from all accessible projects are returned.
Get labels by teamRetrieves all labels associated with a given team id in linear; the team id must refer to an existing team.
List linear projectsRetrieves all projects from the linear account.
List Linear statesRetrieves all workflow states for a specified team in linear, representing the stages an issue progresses through in that team's workflow.
Get teams by projectRetrieves all teams, including their members, and filters each team's associated projects by the provided 'project id'.
List Linear usersLists all users in the linear workspace with their ids, names, emails, and active status.
Remove label from Linear issueRemoves a specified label from an existing linear issue using their ids; successful even if the label isn't on the issue.
Run Query or MutationWildcard action that executes any graphql query or mutation against the linear api.
Update issueUpdates an existing linear issue using its `issue id`; requires at least one other attribute for modification, and all provided entity ids (for state, assignee, labels, etc.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting this tutorial, make sure you have:
  • Python 3.10 or higher installed on your system
  • A Composio account with an API key
  • An OpenAI API key
  • Basic familiarity with Python and async programming

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

pip install composio-langchain langchain-mcp-adapters langchain python-dotenv

Install the required packages for LangChain with MCP support.

What's happening:

  • composio-langchain provides Composio integration for LangChain
  • langchain-mcp-adapters enables MCP client connections
  • langchain is the core agent framework
  • python-dotenv loads environment variables

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
COMPOSIO_USER_ID=your_composio_user_id_here
OPENAI_API_KEY=your_openai_api_key_here

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates your requests to Composio's API
  • COMPOSIO_USER_ID identifies the user for session management
  • OPENAI_API_KEY enables access to OpenAI's language models

Import dependencies

from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain.agents import create_agent
from dotenv import load_dotenv
from composio import Composio
import asyncio
import os

load_dotenv()
What's happening:
  • We're importing LangChain's MCP adapter and Composio SDK
  • The dotenv import loads environment variables from your .env file
  • This setup prepares the foundation for connecting LangChain with Linear functionality through MCP

Initialize Composio client

async def main():
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))

    if not os.getenv("COMPOSIO_API_KEY"):
        raise ValueError("COMPOSIO_API_KEY is not set")
    if not os.getenv("COMPOSIO_USER_ID"):
        raise ValueError("COMPOSIO_USER_ID is not set")
What's happening:
  • We're loading the COMPOSIO_API_KEY from environment variables and validating it exists
  • Creating a Composio instance that will manage our connection to Linear tools
  • Validating that COMPOSIO_USER_ID is also set before proceeding

Create a Tool Router session

# Create Tool Router session for Linear
session = composio.create(
    user_id=os.getenv("COMPOSIO_USER_ID"),
    toolkits=['linear']
)

url = session.mcp.url
What's happening:
  • We're creating a Tool Router session that gives your agent access to Linear tools
  • The create method takes the user ID and specifies which toolkits should be available
  • The returned session.mcp.url is the MCP server URL that your agent will use
  • This approach allows the agent to dynamically load and use Linear tools as needed

Configure the agent with the MCP URL

client = MultiServerMCPClient({
    "linear-agent": {
        "transport": "streamable_http",
        "url": session.mcp.url,
        "headers": {
            "x-api-key": os.getenv("COMPOSIO_API_KEY")
        }
    }
})

tools = await client.get_tools()

agent = create_agent("gpt-5", tools)
What's happening:
  • We're creating a MultiServerMCPClient that connects to our Linear MCP server via HTTP
  • The client is configured with a name and the URL from our Tool Router session
  • get_tools() retrieves all available Linear tools that the agent can use
  • We're creating a LangChain agent using the GPT-5 model

Set up interactive chat interface

conversation_history = []

print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
print("Ask any Linear related question or task to the agent.\n")

while True:
    user_input = input("You: ").strip()

    if user_input.lower() in ['exit', 'quit', 'bye']:
        print("\nGoodbye!")
        break

    if not user_input:
        continue

    conversation_history.append({"role": "user", "content": user_input})
    print("\nAgent is thinking...\n")

    response = await agent.ainvoke({"messages": conversation_history})
    conversation_history = response['messages']
    final_response = response['messages'][-1].content
    print(f"Agent: {final_response}\n")
What's happening:
  • We initialize an empty conversation_history list to maintain context across interactions
  • A while loop continuously accepts user input from the command line
  • When a user types a message, it's added to the conversation history and sent to the agent
  • The agent processes the request using the ainvoke() method with the full conversation history
  • Users can type 'exit', 'quit', or 'bye' to end the chat session gracefully

Run the application

if __name__ == "__main__":
    asyncio.run(main())
What's happening:
  • We call the main() function using asyncio.run() to start the application

Complete Code

Here's the complete code to get you started with Linear and LangChain:

from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain.agents import create_agent
from dotenv import load_dotenv
from composio import Composio
import asyncio
import os

load_dotenv()

async def main():
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
    
    if not os.getenv("COMPOSIO_API_KEY"):
        raise ValueError("COMPOSIO_API_KEY is not set")
    if not os.getenv("COMPOSIO_USER_ID"):
        raise ValueError("COMPOSIO_USER_ID is not set")
    
    session = composio.create(
        user_id=os.getenv("COMPOSIO_USER_ID"),
        toolkits=['linear']
    )

    url = session.mcp.url
    
    client = MultiServerMCPClient({
        "linear-agent": {
            "transport": "streamable_http",
            "url": url,
            "headers": {
                "x-api-key": os.getenv("COMPOSIO_API_KEY")
            }
        }
    })
    
    tools = await client.get_tools()
  
    agent = create_agent("gpt-5", tools)
    
    conversation_history = []
    
    print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
    print("Ask any Linear related question or task to the agent.\n")
    
    while True:
        user_input = input("You: ").strip()
        
        if user_input.lower() in ['exit', 'quit', 'bye']:
            print("\nGoodbye!")
            break
        
        if not user_input:
            continue
        
        conversation_history.append({"role": "user", "content": user_input})
        print("\nAgent is thinking...\n")
        
        response = await agent.ainvoke({"messages": conversation_history})
        conversation_history = response['messages']
        final_response = response['messages'][-1].content
        print(f"Agent: {final_response}\n")

if __name__ == "__main__":
    asyncio.run(main())

Conclusion

You've successfully built a LangChain agent that can interact with Linear through Composio's Tool Router.

Key features of this implementation:

  • Dynamic tool loading through Composio's Tool Router
  • Conversation history maintenance for context-aware responses
  • Async Python provides clean, efficient execution of agent workflows
You can extend this further by adding error handling, implementing specific business logic, or integrating additional Composio toolkits to create multi-app workflows.

How to build Linear MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Linear MCP?

With a standalone Linear MCP server, the agents and LLMs can only access a fixed set of Linear tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Linear and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with LangChain?

Yes, you can. LangChain fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Linear tools.

Can I manage the permissions and scopes for Linear while using Tool Router?

Yes, absolutely. You can configure which Linear scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Linear data and credentials are handled as safely as possible.

Used by agents from

Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.