How to integrate Formbricks MCP with Autogen

Framework Integration Gradient
Formbricks Logo
AutoGen Logo
divider

Introduction

This guide walks you through connecting Formbricks to AutoGen using the Composio tool router. By the end, you'll have a working Formbricks agent that can create a new customer feedback survey, add a contact to our user list, record survey responses from yesterday's event, delete an outdated attribute class through natural language commands.

This guide will help you understand how to give your AutoGen agent real control over a Formbricks account through Composio's Formbricks MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get and set up your OpenAI and Composio API keys
  • Install the required dependencies for Autogen and Composio
  • Initialize Composio and create a Tool Router session for Formbricks
  • Wire that MCP URL into Autogen using McpWorkbench and StreamableHttpServerParams
  • Configure an Autogen AssistantAgent that can call Formbricks tools
  • Run a live chat loop where you ask the agent to perform Formbricks operations

What is AutoGen?

Autogen is a framework for building multi-agent conversational AI systems from Microsoft. It enables you to create agents that can collaborate, use tools, and maintain complex workflows.

Key features include:

  • Multi-Agent Systems: Build collaborative agent workflows
  • MCP Workbench: Native support for Model Context Protocol tools
  • Streaming HTTP: Connect to external services through streamable HTTP
  • AssistantAgent: Pre-built agent class for tool-using assistants

What is the Formbricks MCP server, and what's possible with it?

The Formbricks MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Formbricks account. It provides structured and secure access to your survey management tools, so your agent can perform actions like creating surveys, collecting responses, managing contacts, and handling webhooks automatically on your behalf.

  • Survey creation and management: Easily instruct your agent to create new surveys, define questions, and set up feedback forms tailored to your needs.
  • Automated response collection: Have your agent log responses to surveys, link displays to responses, and streamline data gathering effortlessly.
  • Contact and attribute management: Direct your agent to add or remove contacts, create or delete attribute classes, and segment audiences for more targeted feedback analysis.
  • Webhook configuration for real-time events: Let your agent register new webhooks to automatically send survey response data to external systems or endpoints.
  • Cleanup and maintenance tools: Authorize your agent to delete surveys, survey responses, persons, or unused attributes, keeping your Formbricks workspace organized and up to date.

Supported Tools & Triggers

Tools
Create Action ClassTool to create a new action class.
Create Attribute ClassTool to create an attribute class in Formbricks.
Create ContactTool to create a new contact.
Create DisplayTool to mark a survey as displayed or link it to a response.
Create Survey ResponseTool to create a response for a survey.
Create SurveyTool to create a new survey.
Create WebhookTool to create a new webhook.
Delete Attribute ClassTool to delete an attribute class.
Delete PersonTool to delete a person.
Delete Survey ResponseTool to delete a survey response by its ID.
Delete SurveyTool to delete a survey by its ID.
Delete TeamTool to delete a team.
Delete WebhookTool to delete a webhook by ID.
Get Account InfoTool to retrieve account information.
Get All ContactsTool to retrieve all contacts within the organization.
Get MeTool to retrieve current authenticated organization's and environment details.
Get ResponsesTool to retrieve a list of survey responses.
Get RolesTool to retrieve all available roles in the system.
Get UsersTool to retrieve a list of users within the environment using the Management API.
Get WebhookTool to retrieve details of a specific webhook.
List Action ClassesTool to list all action classes.
List Attribute ClassesTool to list all attribute classes.
List SurveysTool to list all surveys.
List WebhooksTool to list all webhooks.
Update PersonTool to update an existing person.
Update Survey ResponseTool to update an existing survey response.
Update SurveyTool to update an existing survey.
Update WebhookTool to update an existing webhook.
Upload Bulk ContactsTool to upload multiple contacts in bulk.
Upload Private FileTool to obtain S3 presigned upload data for a private survey file.
Upload Public FileTool to get S3 presigned data for uploading a public file.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

You will need:

  • A Composio API key
  • An OpenAI API key (used by Autogen's OpenAIChatCompletionClient)
  • A Formbricks account you can connect to Composio
  • Some basic familiarity with Autogen and Python async

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

bash
pip install composio python-dotenv
pip install autogen-agentchat autogen-ext-openai autogen-ext-tools

Install Composio, Autogen extensions, and dotenv.

What's happening:

  • composio connects your agent to Formbricks via MCP
  • autogen-agentchat provides the AssistantAgent class
  • autogen-ext-openai provides the OpenAI model client
  • autogen-ext-tools provides MCP workbench support

Set up environment variables

bash
COMPOSIO_API_KEY=your-composio-api-key
OPENAI_API_KEY=your-openai-api-key
USER_ID=your-user-identifier@example.com

Create a .env file in your project folder.

What's happening:

  • COMPOSIO_API_KEY is required to talk to Composio
  • OPENAI_API_KEY is used by Autogen's OpenAI client
  • USER_ID is how Composio identifies which user's Formbricks connections to use

Import dependencies and create Tool Router session

python
import asyncio
import os
from dotenv import load_dotenv
from composio import Composio

from autogen_agentchat.agents import AssistantAgent
from autogen_ext.models.openai import OpenAIChatCompletionClient
from autogen_ext.tools.mcp import McpWorkbench, StreamableHttpServerParams

load_dotenv()

async def main():
    # Initialize Composio and create a Formbricks session
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
    session = composio.create(
        user_id=os.getenv("USER_ID"),
        toolkits=["formbricks"]
    )
    url = session.mcp.url
What's happening:
  • load_dotenv() reads your .env file
  • Composio(api_key=...) initializes the SDK
  • create(...) creates a Tool Router session that exposes Formbricks tools
  • session.mcp.url is the MCP endpoint that Autogen will connect to

Configure MCP parameters for Autogen

python
# Configure MCP server parameters for Streamable HTTP
server_params = StreamableHttpServerParams(
    url=url,
    timeout=30.0,
    sse_read_timeout=300.0,
    terminate_on_close=True,
    headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")}
)

Autogen expects parameters describing how to talk to the MCP server. That is what StreamableHttpServerParams is for.

What's happening:

  • url points to the Tool Router MCP endpoint from Composio
  • timeout is the HTTP timeout for requests
  • sse_read_timeout controls how long to wait when streaming responses
  • terminate_on_close=True cleans up the MCP server process when the workbench is closed

Create the model client and agent

python
# Create model client
model_client = OpenAIChatCompletionClient(
    model="gpt-5",
    api_key=os.getenv("OPENAI_API_KEY")
)

# Use McpWorkbench as context manager
async with McpWorkbench(server_params) as workbench:
    # Create Formbricks assistant agent with MCP tools
    agent = AssistantAgent(
        name="formbricks_assistant",
        description="An AI assistant that helps with Formbricks operations.",
        model_client=model_client,
        workbench=workbench,
        model_client_stream=True,
        max_tool_iterations=10
    )

What's happening:

  • OpenAIChatCompletionClient wraps the OpenAI model for Autogen
  • McpWorkbench connects the agent to the MCP tools
  • AssistantAgent is configured with the Formbricks tools from the workbench

Run the interactive chat loop

python
print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
print("Ask any Formbricks related question or task to the agent.\n")

# Conversation loop
while True:
    user_input = input("You: ").strip()

    if user_input.lower() in ["exit", "quit", "bye"]:
        print("\nGoodbye!")
        break

    if not user_input:
        continue

    print("\nAgent is thinking...\n")

    # Run the agent with streaming
    try:
        response_text = ""
        async for message in agent.run_stream(task=user_input):
            if hasattr(message, "content") and message.content:
                response_text = message.content

        # Print the final response
        if response_text:
            print(f"Agent: {response_text}\n")
        else:
            print("Agent: I encountered an issue processing your request.\n")

    except Exception as e:
        print(f"Agent: Sorry, I encountered an error: {str(e)}\n")
What's happening:
  • The script prompts you in a loop with You:
  • Autogen passes your input to the model, which decides which Formbricks tools to call via MCP
  • agent.run_stream(...) yields streaming messages as the agent thinks and calls tools
  • Typing exit, quit, or bye ends the loop

Complete Code

Here's the complete code to get you started with Formbricks and AutoGen:

python
import asyncio
import os
from dotenv import load_dotenv
from composio import Composio

from autogen_agentchat.agents import AssistantAgent
from autogen_ext.models.openai import OpenAIChatCompletionClient
from autogen_ext.tools.mcp import McpWorkbench, StreamableHttpServerParams

load_dotenv()

async def main():
    # Initialize Composio and create a Formbricks session
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
    session = composio.create(
        user_id=os.getenv("USER_ID"),
        toolkits=["formbricks"]
    )
    url = session.mcp.url

    # Configure MCP server parameters for Streamable HTTP
    server_params = StreamableHttpServerParams(
        url=url,
        timeout=30.0,
        sse_read_timeout=300.0,
        terminate_on_close=True,
        headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")}
    )

    # Create model client
    model_client = OpenAIChatCompletionClient(
        model="gpt-5",
        api_key=os.getenv("OPENAI_API_KEY")
    )

    # Use McpWorkbench as context manager
    async with McpWorkbench(server_params) as workbench:
        # Create Formbricks assistant agent with MCP tools
        agent = AssistantAgent(
            name="formbricks_assistant",
            description="An AI assistant that helps with Formbricks operations.",
            model_client=model_client,
            workbench=workbench,
            model_client_stream=True,
            max_tool_iterations=10
        )

        print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
        print("Ask any Formbricks related question or task to the agent.\n")

        # Conversation loop
        while True:
            user_input = input("You: ").strip()

            if user_input.lower() in ['exit', 'quit', 'bye']:
                print("\nGoodbye!")
                break

            if not user_input:
                continue

            print("\nAgent is thinking...\n")

            # Run the agent with streaming
            try:
                response_text = ""
                async for message in agent.run_stream(task=user_input):
                    if hasattr(message, 'content') and message.content:
                        response_text = message.content

                # Print the final response
                if response_text:
                    print(f"Agent: {response_text}\n")
                else:
                    print("Agent: I encountered an issue processing your request.\n")

            except Exception as e:
                print(f"Agent: Sorry, I encountered an error: {str(e)}\n")

if __name__ == "__main__":
    asyncio.run(main())

Conclusion

You now have an Autogen assistant wired into Formbricks through Composio's Tool Router and MCP. From here you can:
  • Add more toolkits to the toolkits list, for example notion or hubspot
  • Refine the agent description to point it at specific workflows
  • Wrap this script behind a UI, Slack bot, or internal tool
Once the pattern is clear for Formbricks, you can reuse the same structure for other MCP-enabled apps with minimal code changes.

How to build Formbricks MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Formbricks MCP?

With a standalone Formbricks MCP server, the agents and LLMs can only access a fixed set of Formbricks tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Formbricks and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with Autogen?

Yes, you can. Autogen fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Formbricks tools.

Can I manage the permissions and scopes for Formbricks while using Tool Router?

Yes, absolutely. You can configure which Formbricks scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Formbricks data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.