How to integrate Firecrawl MCP with Pydantic AI

Framework Integration Gradient
Firecrawl Logo
Pydantic AI Logo
divider

Introduction

This guide walks you through connecting Firecrawl to Pydantic AI using the Composio tool router. By the end, you'll have a working Firecrawl agent that can extract all product prices from this e-commerce site, crawl competitor blogs for latest article summaries, map all subpages linked from homepage url, search for recent news articles about ai trends through natural language commands.

This guide will help you understand how to give your Pydantic AI agent real control over a Firecrawl account through Composio's Firecrawl MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • How to set up your Composio API key and User ID
  • How to create a Composio Tool Router session for Firecrawl
  • How to attach an MCP Server to a Pydantic AI agent
  • How to stream responses and maintain chat history
  • How to build a simple REPL-style chat interface to test your Firecrawl workflows

What is Pydantic AI?

Pydantic AI is a Python framework for building AI agents with strong typing and validation. It leverages Pydantic's data validation capabilities to create robust, type-safe AI applications.

Key features include:

  • Type Safety: Built on Pydantic for automatic data validation
  • MCP Support: Native support for Model Context Protocol servers
  • Streaming: Built-in support for streaming responses
  • Async First: Designed for async/await patterns

What is the Firecrawl MCP server, and what's possible with it?

The Firecrawl MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Firecrawl account. It provides structured and secure access to automated web crawling, scraping, and data extraction, so your agent can perform actions like indexing sites, extracting structured content, mapping URLs, and searching the web on your behalf.

  • Automated web crawling and indexing: Let your agent launch and manage web crawl jobs to gather content or index entire websites efficiently.
  • Structured data extraction: Instruct your agent to extract targeted data from web pages using custom prompts or schemas, turning unstructured sites into actionable information.
  • URL mapping and discovery: Have the agent explore and map all URLs within a website, including options for subdomain inclusion, sitemap processing, or search-based discovery.
  • On-demand scraping and content retrieval: Enable your agent to scrape specific URLs, retrieve page content, and even extract structured JSON using LLM-powered methods.
  • Integrated web search and data collection: Task your agent with running web searches, scraping top result pages, and returning relevant details—all in one workflow.

Supported Tools & Triggers

Tools
Cancel a crawl jobCancels an active or queued web crawl job using its id; attempting to cancel completed, failed, or previously canceled jobs will not change their state.
Start a web crawlInitiates a firecrawl web crawl from a given url, applying various filtering and content extraction rules, and polls until the job is complete; ensure the url is accessible and any regex patterns for paths are valid.
Extract structured dataExtracts structured data from web pages by initiating an extraction job and polling for completion; requires a natural language `prompt` or a json `schema` (one must be provided).
Get the status of a crawl jobRetrieves the current status, progress, and details of a web crawl job, using the job id obtained when the crawl was initiated.
Map multiple URLsMaps a website by discovering urls from a starting base url, with options to customize the crawl via search query, subdomain inclusion, sitemap handling, and result limits; search effectiveness is site-dependent.
Scrape URLScrapes a publicly accessible url, optionally performing pre-scrape browser actions or extracting structured json using an llm, to retrieve content in specified formats.
SearchPerforms a web search for a query, scrapes content from the top search results using firecrawl, and returns details in specified formats.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Python 3.9 or higher
  • A Composio account with an active API key
  • Basic familiarity with Python and async programming

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

bash
pip install composio pydantic-ai python-dotenv

Install the required libraries.

What's happening:

  • composio connects your agent to external SaaS tools like Firecrawl
  • pydantic-ai lets you create structured AI agents with tool support
  • python-dotenv loads your environment variables securely from a .env file

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
USER_ID=your_user_id_here
OPENAI_API_KEY=your_openai_api_key

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates your agent to Composio's API
  • USER_ID associates your session with your account for secure tool access
  • OPENAI_API_KEY to access OpenAI LLMs

Import dependencies

python
import asyncio
import os
from dotenv import load_dotenv
from composio import Composio
from pydantic_ai import Agent
from pydantic_ai.mcp import MCPServerStreamableHTTP

load_dotenv()
What's happening:
  • We load environment variables and import required modules
  • Composio manages connections to Firecrawl
  • MCPServerStreamableHTTP connects to the Firecrawl MCP server endpoint
  • Agent from Pydantic AI lets you define and run the AI assistant

Create a Tool Router Session

python
async def main():
    api_key = os.getenv("COMPOSIO_API_KEY")
    user_id = os.getenv("USER_ID")
    if not api_key or not user_id:
        raise RuntimeError("Set COMPOSIO_API_KEY and USER_ID in your environment")

    # Create a Composio Tool Router session for Firecrawl
    composio = Composio(api_key=api_key)
    session = composio.create(
        user_id=user_id,
        toolkits=["firecrawl"],
    )
    url = session.mcp.url
    if not url:
        raise ValueError("Composio session did not return an MCP URL")
What's happening:
  • We're creating a Tool Router session that gives your agent access to Firecrawl tools
  • The create method takes the user ID and specifies which toolkits should be available
  • The returned session.mcp.url is the MCP server URL that your agent will use

Initialize the Pydantic AI Agent

python
# Attach the MCP server to a Pydantic AI Agent
firecrawl_mcp = MCPServerStreamableHTTP(url, headers={"x-api-key": COMPOSIO_API_KEY})
agent = Agent(
    "openai:gpt-5",
    toolsets=[firecrawl_mcp],
    instructions=(
        "You are a Firecrawl assistant. Use Firecrawl tools to help users "
        "with their requests. Ask clarifying questions when needed."
    ),
)
What's happening:
  • The MCP client connects to the Firecrawl endpoint
  • The agent uses GPT-5 to interpret user commands and perform Firecrawl operations
  • The instructions field defines the agent's role and behavior

Build the chat interface

python
# Simple REPL with message history
history = []
print("Chat started! Type 'exit' or 'quit' to end.\n")
print("Try asking the agent to help you with Firecrawl.\n")

while True:
    user_input = input("You: ").strip()
    if user_input.lower() in {"exit", "quit", "bye"}:
        print("\nGoodbye!")
        break
    if not user_input:
        continue

    print("\nAgent is thinking...\n", flush=True)

    async with agent.run_stream(user_input, message_history=history) as stream_result:
        collected_text = ""
        async for chunk in stream_result.stream_output():
            text_piece = None
            if isinstance(chunk, str):
                text_piece = chunk
            elif hasattr(chunk, "delta") and isinstance(chunk.delta, str):
                text_piece = chunk.delta
            elif hasattr(chunk, "text"):
                text_piece = chunk.text
            if text_piece:
                collected_text += text_piece
        result = stream_result

    print(f"Agent: {collected_text}\n")
    history = result.all_messages()
What's happening:
  • The agent reads input from the terminal and streams its response
  • Firecrawl API calls happen automatically under the hood
  • The model keeps conversation history to maintain context across turns

Run the application

python
if __name__ == "__main__":
    asyncio.run(main())
What's happening:
  • The asyncio loop launches the agent and keeps it running until you exit

Complete Code

Here's the complete code to get you started with Firecrawl and Pydantic AI:

python
import asyncio
import os
from dotenv import load_dotenv
from composio import Composio
from pydantic_ai import Agent
from pydantic_ai.mcp import MCPServerStreamableHTTP

load_dotenv()

async def main():
    api_key = os.getenv("COMPOSIO_API_KEY")
    user_id = os.getenv("USER_ID")
    if not api_key or not user_id:
        raise RuntimeError("Set COMPOSIO_API_KEY and USER_ID in your environment")

    # Create a Composio Tool Router session for Firecrawl
    composio = Composio(api_key=api_key)
    session = composio.create(
        user_id=user_id,
        toolkits=["firecrawl"],
    )
    url = session.mcp.url
    if not url:
        raise ValueError("Composio session did not return an MCP URL")

    # Attach the MCP server to a Pydantic AI Agent
    firecrawl_mcp = MCPServerStreamableHTTP(url, headers={"x-api-key": COMPOSIO_API_KEY})
    agent = Agent(
        "openai:gpt-5",
        toolsets=[firecrawl_mcp],
        instructions=(
            "You are a Firecrawl assistant. Use Firecrawl tools to help users "
            "with their requests. Ask clarifying questions when needed."
        ),
    )

    # Simple REPL with message history
    history = []
    print("Chat started! Type 'exit' or 'quit' to end.\n")
    print("Try asking the agent to help you with Firecrawl.\n")

    while True:
        user_input = input("You: ").strip()
        if user_input.lower() in {"exit", "quit", "bye"}:
            print("\nGoodbye!")
            break
        if not user_input:
            continue

        print("\nAgent is thinking...\n", flush=True)

        async with agent.run_stream(user_input, message_history=history) as stream_result:
            collected_text = ""
            async for chunk in stream_result.stream_output():
                text_piece = None
                if isinstance(chunk, str):
                    text_piece = chunk
                elif hasattr(chunk, "delta") and isinstance(chunk.delta, str):
                    text_piece = chunk.delta
                elif hasattr(chunk, "text"):
                    text_piece = chunk.text
                if text_piece:
                    collected_text += text_piece
            result = stream_result

        print(f"Agent: {collected_text}\n")
        history = result.all_messages()

if __name__ == "__main__":
    asyncio.run(main())

Conclusion

You've built a Pydantic AI agent that can interact with Firecrawl through Composio's Tool Router. With this setup, your agent can perform real Firecrawl actions through natural language. You can extend this further by:
  • Adding other toolkits like Gmail, HubSpot, or Salesforce
  • Building a web-based chat interface around this agent
  • Using multiple MCP endpoints to enable cross-app workflows (for example, Gmail + Firecrawl for workflow automation)
This architecture makes your AI agent "agent-native", able to securely use APIs in a unified, composable way without custom integrations.

How to build Firecrawl MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Firecrawl MCP?

With a standalone Firecrawl MCP server, the agents and LLMs can only access a fixed set of Firecrawl tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Firecrawl and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with Pydantic AI?

Yes, you can. Pydantic AI fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Firecrawl tools.

Can I manage the permissions and scopes for Firecrawl while using Tool Router?

Yes, absolutely. You can configure which Firecrawl scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Firecrawl data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.