How to integrate College football data MCP with Mastra AI

Framework Integration Gradient
College football data Logo
Mastra AI Logo
divider

Introduction

This guide walks you through connecting College football data to Mastra AI using the Composio tool router. By the end, you'll have a working College football data agent that can show betting lines for this week's games, get tv schedule for sec games this weekend, list advanced box scores for ohio state, summarize team talent rankings for 2024 through natural language commands.

This guide will help you understand how to give your Mastra AI agent real control over a College football data account through Composio's College football data MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Set up your environment so Mastra, OpenAI, and Composio work together
  • Create a Tool Router session in Composio that exposes College football data tools
  • Connect Mastra's MCP client to the Composio generated MCP URL
  • Fetch College football data tool definitions and attach them as a toolset
  • Build a Mastra agent that can reason, call tools, and return structured results
  • Run an interactive CLI where you can chat with your College football data agent

What is Mastra AI?

Mastra AI is a TypeScript framework for building AI agents with tool support. It provides a clean API for creating agents that can use external services through MCP.

Key features include:

  • MCP Client: Built-in support for Model Context Protocol servers
  • Toolsets: Organize tools into logical groups
  • Step Callbacks: Monitor and debug agent execution
  • OpenAI Integration: Works with OpenAI models via @ai-sdk/openai

What is the College football data MCP server, and what's possible with it?

The College football data MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your College Football Data account. It provides structured and secure access to comprehensive college football stats, schedules, advanced analytics, and recruiting data, so your agent can fetch game results, analyze team performance, retrieve broadcast info, and explore historical metrics on your behalf.

  • Retrieve game schedules and results: Instantly fetch upcoming games, past scores, and matchup outcomes filtered by season, week, team, or conference.
  • Analyze advanced team and player stats: Have your agent pull in-depth box scores, advanced metrics, and season-long analytics to compare team or player performance.
  • Access media and broadcast information: Quickly get details on TV, radio, and streaming coverage for selected games, including broadcast schedules and platforms.
  • Review team talent and recruiting rankings: Let your agent track composite team talent scores and recruiting class data across seasons for any program.
  • Explore historical conference and division data: Effortlessly trace a team's conference membership history, division alignment, and related metadata over time.

Supported Tools & Triggers

Tools
Advanced Box ScoreTool to retrieve advanced box score metrics for a single college football game.
Advanced Game StatsTool to retrieve advanced team metrics at the game level.
Advanced Season Stats by TeamTool to retrieve advanced season metrics aggregated by team and season.
Betting LinesTool to fetch betting lines and totals by game and provider.
Composite Team TalentTool to fetch composite team talent rankings by season.
Conference Memberships HistoryTool to retrieve historical conference memberships for teams, including years active and division.
Divisions by ConferenceTool to list FBS/FCS conference divisions with active years and metadata.
Get Drive DataTool to retrieve drive-level data and results.
Get Game MediaTool to retrieve game media information and broadcast schedules (TV, radio, web, etc.
Get Games and ResultsTool to retrieve games and results for a given season/week/team.
Get Player Game StatsTool to fetch player statistics at the game level.
Get Team Game StatsTool to fetch team statistics at the game level.
List Coaches and HistoryTool to get coaching records and history.
List ConferencesTool to list all college football conferences.
List FBS TeamsTool to list FBS teams for a given season.
List FCS TeamsTool to list FCS teams for a given season and conference.
List TeamsTool to list college football teams.
List Venues and StadiumsTool to list college football venues with metadata (name, capacity, location, etc.
NFL Draft PicksTool to list NFL Draft picks.
NFL Draft PositionsTool to list NFL draft positions.
NFL Draft TeamsTool to list NFL teams used in draft endpoints.
Play-by-Play DataTool to fetch play-by-play data for college football games.
Play Stats PlayerTool to fetch player-level stats tied to individual plays.
Play Stat TypesTool to fetch all play-level stat type definitions.
Player PPA by GameTool to retrieve player-level PPA/EPA broken down by game.
PPA Player By SeasonTool to fetch player-level PPA/EPA aggregated by season.
Predict Expected Points (EP)Tool to get expected points by down, distance, and field position.
PPA Team By GameTool to retrieve team Predicted Points Added (PPA) by game.
Rankings PollsTool to retrieve weekly human/computer poll rankings.
Elo RatingsTool to retrieve Elo ratings for college football teams.
SP+ RatingsTool to retrieve SP+ team ratings.
SRS RatingsTool to retrieve Simple Rating System (SRS) team ratings.
Recruiting Group DictionaryTool to list recruiting position group aggregations.
Recruiting Transfer PortalTool to retrieve transfer portal entries for a given season.
Returning Production by TeamTool to fetch Bill Connelly–style returning production splits by team and season.
Season Stats PlayerTool to fetch basic season stats aggregated by player and season.
Season Team StatsTool to get basic season stats aggregated by team and season.
Season Types DictionaryTool to list season types.
Team Matchup HistoryTool to retrieve head-to-head team matchup records over a date range.
Team season recordsTool to fetch team season records by year with optional filters.
Get Team RosterTool to fetch roster for a given team and season.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Node.js 18 or higher
  • A Composio account with an active API key
  • An OpenAI API key
  • Basic familiarity with TypeScript

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key.
  • You need credits or a connected billing setup to use the models.
  • Store the key somewhere safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Go to Settings and copy your API key.
  • This key lets your Mastra agent talk to Composio and reach College football data through MCP.

Install dependencies

bash
npm install @composio/core @mastra/core @mastra/mcp @ai-sdk/openai dotenv

Install the required packages.

What's happening:

  • @composio/core is the Composio SDK for creating MCP sessions
  • @mastra/core provides the Agent class
  • @mastra/mcp is Mastra's MCP client
  • @ai-sdk/openai is the model wrapper for OpenAI
  • dotenv loads environment variables from .env

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
COMPOSIO_USER_ID=your_user_id_here
OPENAI_API_KEY=your_openai_api_key_here

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates your requests to Composio
  • COMPOSIO_USER_ID tells Composio which user this session belongs to
  • OPENAI_API_KEY lets the Mastra agent call OpenAI models

Import libraries and validate environment

typescript
import "dotenv/config";
import { openai } from "@ai-sdk/openai";
import { Agent } from "@mastra/core/agent";
import { MCPClient } from "@mastra/mcp";
import { Composio } from "@composio/core";
import * as readline from "readline";

import type { AiMessageType } from "@mastra/core/agent";

const openaiAPIKey = process.env.OPENAI_API_KEY;
const composioAPIKey = process.env.COMPOSIO_API_KEY;
const composioUserID = process.env.COMPOSIO_USER_ID;

if (!openaiAPIKey) throw new Error("OPENAI_API_KEY is not set");
if (!composioAPIKey) throw new Error("COMPOSIO_API_KEY is not set");
if (!composioUserID) throw new Error("COMPOSIO_USER_ID is not set");

const composio = new Composio({
  apiKey: composioAPIKey as string,
});
What's happening:
  • dotenv/config auto loads your .env so process.env.* is available
  • openai gives you a Mastra compatible model wrapper
  • Agent is the Mastra agent that will call tools and produce answers
  • MCPClient connects Mastra to your Composio MCP server
  • Composio is used to create a Tool Router session

Create a Tool Router session for College football data

typescript
async function main() {
  const session = await composio.create(
    composioUserID as string,
    {
      toolkits: ["college_football_data"],
    },
  );

  const composioMCPUrl = session.mcp.url;
  console.log("College football data MCP URL:", composioMCPUrl);
What's happening:
  • create spins up a short-lived MCP HTTP endpoint for this user
  • The toolkits array contains "college_football_data" for College football data access
  • session.mcp.url is the MCP URL that Mastra's MCPClient will connect to

Configure Mastra MCP client and fetch tools

typescript
const mcpClient = new MCPClient({
    id: composioUserID as string,
    servers: {
      nasdaq: {
        url: new URL(composioMCPUrl),
        requestInit: {
          headers: session.mcp.headers,
        },
      },
    },
    timeout: 30_000,
  });

console.log("Fetching MCP tools from Composio...");
const composioTools = await mcpClient.getTools();
console.log("Number of tools:", Object.keys(composioTools).length);
What's happening:
  • MCPClient takes an id for this client and a list of MCP servers
  • The headers property includes the x-api-key for authentication
  • getTools fetches the tool definitions exposed by the College football data toolkit

Create the Mastra agent

typescript
const agent = new Agent({
    name: "college_football_data-mastra-agent",
    instructions: "You are an AI agent with College football data tools via Composio.",
    model: "openai/gpt-5",
  });
What's happening:
  • Agent is the core Mastra agent
  • name is just an identifier for logging and debugging
  • instructions guide the agent to use tools instead of only answering in natural language
  • model uses openai("gpt-5") to configure the underlying LLM

Set up interactive chat interface

typescript
let messages: AiMessageType[] = [];

console.log("Chat started! Type 'exit' or 'quit' to end.\n");

const rl = readline.createInterface({
  input: process.stdin,
  output: process.stdout,
  prompt: "> ",
});

rl.prompt();

rl.on("line", async (userInput: string) => {
  const trimmedInput = userInput.trim();

  if (["exit", "quit", "bye"].includes(trimmedInput.toLowerCase())) {
    console.log("\nGoodbye!");
    rl.close();
    process.exit(0);
  }

  if (!trimmedInput) {
    rl.prompt();
    return;
  }

  messages.push({
    id: crypto.randomUUID(),
    role: "user",
    content: trimmedInput,
  });

  console.log("\nAgent is thinking...\n");

  try {
    const response = await agent.generate(messages, {
      toolsets: {
        college_football_data: composioTools,
      },
      maxSteps: 8,
    });

    const { text } = response;

    if (text && text.trim().length > 0) {
      console.log(`Agent: ${text}\n`);
        messages.push({
          id: crypto.randomUUID(),
          role: "assistant",
          content: text,
        });
      }
    } catch (error) {
      console.error("\nError:", error);
    }

    rl.prompt();
  });

  rl.on("close", async () => {
    console.log("\nSession ended.");
    await mcpClient.disconnect();
    process.exit(0);
  });
}

main().catch((err) => {
  console.error("Fatal error:", err);
  process.exit(1);
});
What's happening:
  • messages keeps the full conversation history in Mastra's expected format
  • agent.generate runs the agent with conversation history and College football data toolsets
  • maxSteps limits how many tool calls the agent can take in a single run
  • onStepFinish is a hook that prints intermediate steps for debugging

Complete Code

Here's the complete code to get you started with College football data and Mastra AI:

typescript
import "dotenv/config";
import { openai } from "@ai-sdk/openai";
import { Agent } from "@mastra/core/agent";
import { MCPClient } from "@mastra/mcp";
import { Composio } from "@composio/core";
import * as readline from "readline";

import type { AiMessageType } from "@mastra/core/agent";

const openaiAPIKey = process.env.OPENAI_API_KEY;
const composioAPIKey = process.env.COMPOSIO_API_KEY;
const composioUserID = process.env.COMPOSIO_USER_ID;

if (!openaiAPIKey) throw new Error("OPENAI_API_KEY is not set");
if (!composioAPIKey) throw new Error("COMPOSIO_API_KEY is not set");
if (!composioUserID) throw new Error("COMPOSIO_USER_ID is not set");

const composio = new Composio({ apiKey: composioAPIKey as string });

async function main() {
  const session = await composio.create(composioUserID as string, {
    toolkits: ["college_football_data"],
  });

  const composioMCPUrl = session.mcp.url;

  const mcpClient = new MCPClient({
    id: composioUserID as string,
    servers: {
      college_football_data: {
        url: new URL(composioMCPUrl),
        requestInit: {
          headers: session.mcp.headers,
        },
      },
    },
    timeout: 30_000,
  });

  const composioTools = await mcpClient.getTools();

  const agent = new Agent({
    name: "college_football_data-mastra-agent",
    instructions: "You are an AI agent with College football data tools via Composio.",
    model: "openai/gpt-5",
  });

  let messages: AiMessageType[] = [];

  const rl = readline.createInterface({
    input: process.stdin,
    output: process.stdout,
    prompt: "> ",
  });

  rl.prompt();

  rl.on("line", async (input: string) => {
    const trimmed = input.trim();
    if (["exit", "quit"].includes(trimmed.toLowerCase())) {
      rl.close();
      return;
    }

    messages.push({ id: crypto.randomUUID(), role: "user", content: trimmed });

    const { text } = await agent.generate(messages, {
      toolsets: { college_football_data: composioTools },
      maxSteps: 8,
    });

    if (text) {
      console.log(`Agent: ${text}\n`);
      messages.push({ id: crypto.randomUUID(), role: "assistant", content: text });
    }

    rl.prompt();
  });

  rl.on("close", async () => {
    await mcpClient.disconnect();
    process.exit(0);
  });
}

main();

Conclusion

You've built a Mastra AI agent that can interact with College football data through Composio's Tool Router. You can extend this further by:
  • Adding other toolkits like Gmail, Slack, or GitHub
  • Building a web-based chat interface around this agent
  • Using multiple MCP endpoints to enable cross-app workflows

How to build College football data MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and College football data MCP?

With a standalone College football data MCP server, the agents and LLMs can only access a fixed set of College football data tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from College football data and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with Mastra AI?

Yes, you can. Mastra AI fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right College football data tools.

Can I manage the permissions and scopes for College football data while using Tool Router?

Yes, absolutely. You can configure which College football data scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your College football data data and credentials are handled as safely as possible.

Used by agents from

Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.