How to integrate College football data MCP with CrewAI

Framework Integration Gradient
College football data Logo
CrewAI Logo
divider

Introduction

This guide walks you through connecting College football data to CrewAI using the Composio tool router. By the end, you'll have a working College football data agent that can show betting lines for this week's games, get tv schedule for sec games this weekend, list advanced box scores for ohio state, summarize team talent rankings for 2024 through natural language commands.

This guide will help you understand how to give your CrewAI agent real control over a College football data account through Composio's College football data MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get a Composio API key and configure your College football data connection
  • Set up CrewAI with an MCP enabled agent
  • Create a Tool Router session or standalone MCP server for College football data
  • Build a conversational loop where your agent can execute College football data operations

What is CrewAI?

CrewAI is a powerful framework for building multi-agent AI systems. It provides primitives for defining agents with specific roles, creating tasks, and orchestrating workflows through crews.

Key features include:

  • Agent Roles: Define specialized agents with specific goals and backstories
  • Task Management: Create tasks with clear descriptions and expected outputs
  • Crew Orchestration: Combine agents and tasks into collaborative workflows
  • MCP Integration: Connect to external tools through Model Context Protocol

What is the College football data MCP server, and what's possible with it?

The College football data MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your College Football Data account. It provides structured and secure access to comprehensive college football stats, schedules, advanced analytics, and recruiting data, so your agent can fetch game results, analyze team performance, retrieve broadcast info, and explore historical metrics on your behalf.

  • Retrieve game schedules and results: Instantly fetch upcoming games, past scores, and matchup outcomes filtered by season, week, team, or conference.
  • Analyze advanced team and player stats: Have your agent pull in-depth box scores, advanced metrics, and season-long analytics to compare team or player performance.
  • Access media and broadcast information: Quickly get details on TV, radio, and streaming coverage for selected games, including broadcast schedules and platforms.
  • Review team talent and recruiting rankings: Let your agent track composite team talent scores and recruiting class data across seasons for any program.
  • Explore historical conference and division data: Effortlessly trace a team's conference membership history, division alignment, and related metadata over time.

Supported Tools & Triggers

Tools
Advanced Box ScoreTool to retrieve advanced box score metrics for a single college football game.
Advanced Game StatsTool to retrieve advanced team metrics at the game level.
Advanced Season Stats by TeamTool to retrieve advanced season metrics aggregated by team and season.
Betting LinesTool to fetch betting lines and totals by game and provider.
Composite Team TalentTool to fetch composite team talent rankings by season.
Conference Memberships HistoryTool to retrieve historical conference memberships for teams, including years active and division.
Divisions by ConferenceTool to list FBS/FCS conference divisions with active years and metadata.
Get Drive DataTool to retrieve drive-level data and results.
Get Game MediaTool to retrieve game media information and broadcast schedules (TV, radio, web, etc.
Get Games and ResultsTool to retrieve games and results for a given season/week/team.
Get Player Game StatsTool to fetch player statistics at the game level.
Get Team Game StatsTool to fetch team statistics at the game level.
List Coaches and HistoryTool to get coaching records and history.
List ConferencesTool to list all college football conferences.
List FBS TeamsTool to list FBS teams for a given season.
List FCS TeamsTool to list FCS teams for a given season and conference.
List TeamsTool to list college football teams.
List Venues and StadiumsTool to list college football venues with metadata (name, capacity, location, etc.
NFL Draft PicksTool to list NFL Draft picks.
NFL Draft PositionsTool to list NFL draft positions.
NFL Draft TeamsTool to list NFL teams used in draft endpoints.
Play-by-Play DataTool to fetch play-by-play data for college football games.
Play Stats PlayerTool to fetch player-level stats tied to individual plays.
Play Stat TypesTool to fetch all play-level stat type definitions.
Player PPA by GameTool to retrieve player-level PPA/EPA broken down by game.
PPA Player By SeasonTool to fetch player-level PPA/EPA aggregated by season.
Predict Expected Points (EP)Tool to get expected points by down, distance, and field position.
PPA Team By GameTool to retrieve team Predicted Points Added (PPA) by game.
Rankings PollsTool to retrieve weekly human/computer poll rankings.
Elo RatingsTool to retrieve Elo ratings for college football teams.
SP+ RatingsTool to retrieve SP+ team ratings.
SRS RatingsTool to retrieve Simple Rating System (SRS) team ratings.
Recruiting Group DictionaryTool to list recruiting position group aggregations.
Recruiting Transfer PortalTool to retrieve transfer portal entries for a given season.
Returning Production by TeamTool to fetch Bill Connelly–style returning production splits by team and season.
Season Stats PlayerTool to fetch basic season stats aggregated by player and season.
Season Team StatsTool to get basic season stats aggregated by team and season.
Season Types DictionaryTool to list season types.
Team Matchup HistoryTool to retrieve head-to-head team matchup records over a date range.
Team season recordsTool to fetch team season records by year with optional filters.
Get Team RosterTool to fetch roster for a given team and season.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Python 3.9 or higher
  • A Composio account and API key
  • A College football data connection authorized in Composio
  • An OpenAI API key for the CrewAI LLM
  • Basic familiarity with Python

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

bash
pip install composio crewai crewai-tools[mcp] python-dotenv
What's happening:
  • composio connects your agent to College football data via MCP
  • crewai provides Agent, Task, Crew, and LLM primitives
  • crewai-tools[mcp] includes MCP helpers
  • python-dotenv loads environment variables from .env

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
USER_ID=your_user_id_here
OPENAI_API_KEY=your_openai_api_key_here

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates with Composio
  • USER_ID scopes the session to your account
  • OPENAI_API_KEY lets CrewAI use your chosen OpenAI model

Import dependencies

python
import os
from composio import Composio
from crewai import Agent, Task, Crew
from crewai_tools import MCPServerAdapter
import dotenv

dotenv.load_dotenv()

COMPOSIO_API_KEY = os.getenv("COMPOSIO_API_KEY")
COMPOSIO_USER_ID = os.getenv("COMPOSIO_USER_ID")

if not COMPOSIO_API_KEY:
    raise ValueError("COMPOSIO_API_KEY is not set")
if not COMPOSIO_USER_ID:
    raise ValueError("COMPOSIO_USER_ID is not set")
What's happening:
  • CrewAI classes define agents and tasks, and run the workflow
  • MCPServerHTTP connects the agent to an MCP endpoint
  • Composio will give you a short lived College football data MCP URL

Create a Composio Tool Router session for College football data

python
composio_client = Composio(api_key=COMPOSIO_API_KEY)
session = composio_client.create(user_id=COMPOSIO_USER_ID, toolkits=["college_football_data"])

url = session.mcp.url
What's happening:
  • You create a College football data only session through Composio
  • Composio returns an MCP HTTP URL that exposes College football data tools

Initialize the MCP Server

python
server_params = {
    "url": url,
    "transport": "streamable-http",
    "headers": {"x-api-key": COMPOSIO_API_KEY},
}

with MCPServerAdapter(server_params) as tools:
    agent = Agent(
        role="Search Assistant",
        goal="Help users search the internet effectively",
        backstory="You are a helpful assistant with access to search tools.",
        tools=tools,
        verbose=False,
        max_iter=10,
    )
What's Happening:
  • Server Configuration: The code sets up connection parameters including the MCP server URL, streamable HTTP transport, and Composio API key authentication.
  • MCP Adapter Bridge: MCPServerAdapter acts as a context manager that converts Composio MCP tools into a CrewAI-compatible format.
  • Agent Setup: Creates a CrewAI Agent with a defined role (Search Assistant), goal (help with internet searches), and access to the MCP tools.
  • Configuration Options: The agent includes settings like verbose=False for clean output and max_iter=10 to prevent infinite loops.
  • Dynamic Tool Usage: Once created, the agent automatically accesses all Composio Search tools and decides when to use them based on user queries.

Create a CLI Chatloop and define the Crew

python
print("Chat started! Type 'exit' or 'quit' to end.\n")

conversation_context = ""

while True:
    user_input = input("You: ").strip()

    if user_input.lower() in ["exit", "quit", "bye"]:
        print("\nGoodbye!")
        break

    if not user_input:
        continue

    conversation_context += f"\nUser: {user_input}\n"
    print("\nAgent is thinking...\n")

    task = Task(
        description=(
            f"Conversation history:\n{conversation_context}\n\n"
            f"Current request: {user_input}"
        ),
        expected_output="A helpful response addressing the user's request",
        agent=agent,
    )

    crew = Crew(agents=[agent], tasks=[task], verbose=False)
    result = crew.kickoff()
    response = str(result)

    conversation_context += f"Agent: {response}\n"
    print(f"Agent: {response}\n")
What's Happening:
  • Interactive CLI Setup: The code creates an infinite loop that continuously prompts for user input and maintains the entire conversation history in a string variable.
  • Input Validation: Empty inputs are ignored to prevent processing blank messages and keep the conversation clean.
  • Context Building: Each user message is appended to the conversation context, which preserves the full dialogue history for better agent responses.
  • Dynamic Task Creation: For every user input, a new Task is created that includes both the full conversation history and the current request as context.
  • Crew Execution: A Crew is instantiated with the agent and task, then kicked off to process the request and generate a response.
  • Response Management: The agent's response is converted to a string, added to the conversation context, and displayed to the user, maintaining conversational continuity.

Complete Code

Here's the complete code to get you started with College football data and CrewAI:

from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter
from composio import Composio
from dotenv import load_dotenv
import os

load_dotenv()

GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
COMPOSIO_API_KEY = os.getenv("COMPOSIO_API_KEY")
COMPOSIO_USER_ID = os.getenv("COMPOSIO_USER_ID")

if not GOOGLE_API_KEY:
    raise ValueError("GOOGLE_API_KEY is not set in the environment.")
if not COMPOSIO_API_KEY:
    raise ValueError("COMPOSIO_API_KEY is not set in the environment.")
if not COMPOSIO_USER_ID:
    raise ValueError("COMPOSIO_USER_ID is not set in the environment.")

# Initialize Composio and create a session
composio = Composio(api_key=COMPOSIO_API_KEY)
session = composio.create(
    user_id=COMPOSIO_USER_ID,
    toolkits=["college_football_data"],
)
url = session.mcp.url

# Configure LLM
llm = LLM(
    model="gpt-5",
    api_key=os.getenv("OPENAI_API_KEY"),
)

server_params = {
    "url": url,
    "transport": "streamable-http",
    "headers": {"x-api-key": COMPOSIO_API_KEY},
}

with MCPServerAdapter(server_params) as tools:
    agent = Agent(
        role="Search Assistant",
        goal="Help users with internet searches",
        backstory="You are an expert assistant with access to Composio Search tools.",
        tools=tools,
        llm=llm,
        verbose=False,
        max_iter=10,
    )

    print("Chat started! Type 'exit' or 'quit' to end.\n")

    conversation_context = ""

    while True:
        user_input = input("You: ").strip()

        if user_input.lower() in ["exit", "quit", "bye"]:
            print("\nGoodbye!")
            break

        if not user_input:
            continue

        conversation_context += f"\nUser: {user_input}\n"
        print("\nAgent is thinking...\n")

        task = Task(
            description=(
                f"Conversation history:\n{conversation_context}\n\n"
                f"Current request: {user_input}"
            ),
            expected_output="A helpful response addressing the user's request",
            agent=agent,
        )

        crew = Crew(agents=[agent], tasks=[task], verbose=False)
        result = crew.kickoff()
        response = str(result)

        conversation_context += f"Agent: {response}\n"
        print(f"Agent: {response}\n")

Conclusion

You now have a CrewAI agent connected to College football data through Composio's Tool Router. The agent can perform College football data operations through natural language commands.

Next steps:

  • Add role-specific instructions to customize agent behavior
  • Plug in more toolkits for multi-app workflows
  • Chain tasks for complex multi-step operations

How to build College football data MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and College football data MCP?

With a standalone College football data MCP server, the agents and LLMs can only access a fixed set of College football data tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from College football data and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with CrewAI?

Yes, you can. CrewAI fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right College football data tools.

Can I manage the permissions and scopes for College football data while using Tool Router?

Yes, absolutely. You can configure which College football data scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your College football data data and credentials are handled as safely as possible.

Used by agents from

Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.