How to integrate Codereadr MCP with OpenAI Agents SDK

Framework Integration Gradient
Codereadr Logo
open-ai-agents-sdk Logo
divider

Introduction

This guide walks you through connecting Codereadr to the OpenAI Agents SDK using the Composio tool router. By the end, you'll have a working Codereadr agent that can create a new barcode scanning service, configure survey questions after each scan, enable kiosk mode for unattended device, delete a codereadr database by id through natural language commands.

This guide will help you understand how to give your OpenAI Agents SDK agent real control over a Codereadr account through Composio's Codereadr MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get and set up your OpenAI and Composio API keys
  • Install the necessary dependencies
  • Initialize Composio and create a Tool Router session for Codereadr
  • Configure an AI agent that can use Codereadr as a tool
  • Run a live chat session where you can ask the agent to perform Codereadr operations

What is open-ai-agents-sdk?

The OpenAI Agents SDK is a lightweight framework for building AI agents that can use tools and maintain conversation state. It provides a simple interface for creating agents with hosted MCP tool support.

Key features include:

  • Hosted MCP Tools: Connect to external services through hosted MCP endpoints
  • SQLite Sessions: Persist conversation history across interactions
  • Simple API: Clean interface with Agent, Runner, and tool configuration
  • Streaming Support: Real-time response streaming for interactive applications

What is the Codereadr MCP server, and what's possible with it?

The Codereadr MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Codereadr account. It provides structured and secure access to your data collection and barcode scanning workflows, so your agent can create services, configure scan workflows, manage databases, and automate data collection processes for you.

  • Automated service and workflow setup: Let your agent create new CodeREADr services and configure custom workflows for scanning, picking, delivery, and receiving tasks.
  • Custom data collection form creation: Easily set up or modify data capture forms by adding or deleting custom questions after each scan.
  • Real-time scan integration: Configure Direct Scan URLs, postback endpoints, or Google Sheets connectors to forward scan results instantly to your desired platforms.
  • Device and database management: Direct your agent to delete devices or entire databases when they are no longer needed, streamlining your data environment.
  • Kiosk and unattended scanning configuration: Enable and fine-tune Kiosk Mode for unattended or dedicated scanning stations to support high-volume operations.

Supported Tools & Triggers

Tools
Collect Data With QuestionsTool to configure data collection forms by adding custom questions.
Configure CodeREADr ConnectorHelper to guide configuring the CodeREADr Connector for Google Sheets.
Configure Direct Scan URL (DSU)Tool to configure a Direct Scan URL (DSU).
Configure CodeREADr Kiosk ModeTool to enable and configure Kiosk Mode for unattended scanning.
Configure Picking, Delivery & Receiving AppTool to configure the complete picking, delivery, and receiving workflow.
Configure CodeREADr Postback URLTool to configure a real-time postback URL for a CodeREADr service.
Create CodeREADr ServiceTool to create a new workflow configuration (service) for scanning tasks.
Delete CodeREADr DatabaseTool to delete an existing CodeREADr database.
Delete DeviceTool to delete a device.
Delete Custom QuestionTool to delete an existing custom question.
Delete CodeREADr ServiceTool to delete an existing CodeREADr service.
Delete CodeREADr UserTool to delete an existing user account.
Generate Scan LinkTool to generate a CodeREADr scan link URI.
List Supported Barcode TypesTool to list supported barcode types.
Manage CodeREADr Response FieldsTool to create or update response fields returned with scan data.
Retrieve CodeREADr DatabasesTool to list all validation databases.
Retrieve DevicesTool to fetch registered devices.
Retrieve bulk scan recordsTool to retrieve bulk scan records.
Retrieve CodeREADr ServicesTool to list all services.
Set Admin PINTool to set or update the administrator PIN for Kiosk Mode.
Update CodeREADr QuestionTool to update an existing custom question.
Update CodeREADr ServiceTool to update an existing service configuration.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Composio API Key and OpenAI API Key
  • Primary know-how of OpenAI Agents SDK
  • A live Codereadr project
  • Some knowledge of Python or Typescript

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key

Install dependencies

pip install composio_openai_agents openai-agents python-dotenv

Install the Composio SDK and the OpenAI Agents SDK.

Set up environment variables

bash
OPENAI_API_KEY=sk-...your-api-key
COMPOSIO_API_KEY=your-api-key
USER_ID=composio_user@gmail.com

Create a .env file and add your OpenAI and Composio API keys.

Import dependencies

import asyncio
import os
from dotenv import load_dotenv

from composio import Composio
from composio_openai_agents import OpenAIAgentsProvider
from agents import Agent, Runner, HostedMCPTool, SQLiteSession
What's happening:
  • You're importing all necessary libraries.
  • The Composio and OpenAIAgentsProvider classes are imported to connect your OpenAI agent to Composio tools like Codereadr.

Set up the Composio instance

load_dotenv()

api_key = os.getenv("COMPOSIO_API_KEY")
user_id = os.getenv("USER_ID")

if not api_key:
    raise RuntimeError("COMPOSIO_API_KEY is not set. Create a .env file with COMPOSIO_API_KEY=your_key")

# Initialize Composio
composio = Composio(api_key=api_key, provider=OpenAIAgentsProvider())
What's happening:
  • load_dotenv() loads your .env file so OPENAI_API_KEY and COMPOSIO_API_KEY are available as environment variables.
  • Creating a Composio instance using the API Key and OpenAIAgentsProvider class.

Create a Tool Router session

# Create a Codereadr Tool Router session
session = composio.create(
    user_id=user_id,
    toolkits=["codereadr"]
)

mcp_url = session.mcp.url

What is happening:

  • You give the Tool Router the user id and the toolkits you want available. Here, it is only codereadr.
  • The router checks the user's Codereadr connection and prepares the MCP endpoint.
  • The returned session.mcp.url is the MCP URL that your agent will use to access Codereadr.
  • This approach keeps things lightweight and lets the agent request Codereadr tools only when needed during the conversation.

Configure the agent

# Configure agent with MCP tool
agent = Agent(
    name="Assistant",
    model="gpt-5",
    instructions=(
        "You are a helpful assistant that can access Codereadr. "
        "Help users perform Codereadr operations through natural language."
    ),
    tools=[
        HostedMCPTool(
            tool_config={
                "type": "mcp",
                "server_label": "tool_router",
                "server_url": mcp_url,
                "headers": {"x-api-key": api_key},
                "require_approval": "never",
            }
        )
    ],
)
What's happening:
  • We're creating an Agent instance with a name, model (gpt-5), and clear instructions about its purpose.
  • The agent's instructions tell it that it can access Codereadr and help with queries, inserts, updates, authentication, and fetching database information.
  • The tools array includes a HostedMCPTool that connects to the MCP server URL we created earlier.
  • The headers dict includes the Composio API key for secure authentication with the MCP server.
  • require_approval: 'never' means the agent can execute Codereadr operations without asking for permission each time, making interactions smoother.

Start chat loop and handle conversation

print("\nComposio Tool Router session created.")

chat_session = SQLiteSession("conversation_openai_toolrouter")

print("\nChat started. Type your requests below.")
print("Commands: 'exit', 'quit', or 'q' to end\n")

async def main():
    try:
        result = await Runner.run(
            agent,
            "What can you help me with?",
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")
    except Exception as e:
        print(f"Error: {e}\n")

    while True:
        user_input = input("You: ").strip()
        if user_input.lower() in {"exit", "quit", "q"}:
            print("Goodbye!")
            break

        result = await Runner.run(
            agent,
            user_input,
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")

asyncio.run(main())
What's happening:
  • The program prints a session URL that you visit to authorize Codereadr.
  • After authorization, the chat begins.
  • Each message you type is processed by the agent using Runner.run().
  • The responses are printed to the console, and conversations are saved locally using SQLite.
  • Typing exit, quit, or q cleanly ends the chat.

Complete Code

Here's the complete code to get you started with Codereadr and open-ai-agents-sdk:

import asyncio
import os
from dotenv import load_dotenv

from composio import Composio
from composio_openai_agents import OpenAIAgentsProvider
from agents import Agent, Runner, HostedMCPTool, SQLiteSession

load_dotenv()

api_key = os.getenv("COMPOSIO_API_KEY")
user_id = os.getenv("USER_ID")

if not api_key:
    raise RuntimeError("COMPOSIO_API_KEY is not set. Create a .env file with COMPOSIO_API_KEY=your_key")

# Initialize Composio
composio = Composio(api_key=api_key, provider=OpenAIAgentsProvider())

# Create Tool Router session
session = composio.create(
    user_id=user_id,
    toolkits=["codereadr"]
)
mcp_url = session.mcp.url

# Configure agent with MCP tool
agent = Agent(
    name="Assistant",
    model="gpt-5",
    instructions=(
        "You are a helpful assistant that can access Codereadr. "
        "Help users perform Codereadr operations through natural language."
    ),
    tools=[
        HostedMCPTool(
            tool_config={
                "type": "mcp",
                "server_label": "tool_router",
                "server_url": mcp_url,
                "headers": {"x-api-key": api_key},
                "require_approval": "never",
            }
        )
    ],
)

print("\nComposio Tool Router session created.")

chat_session = SQLiteSession("conversation_openai_toolrouter")

print("\nChat started. Type your requests below.")
print("Commands: 'exit', 'quit', or 'q' to end\n")

async def main():
    try:
        result = await Runner.run(
            agent,
            "What can you help me with?",
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")
    except Exception as e:
        print(f"Error: {e}\n")

    while True:
        user_input = input("You: ").strip()
        if user_input.lower() in {"exit", "quit", "q"}:
            print("Goodbye!")
            break

        result = await Runner.run(
            agent,
            user_input,
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")

asyncio.run(main())

Conclusion

This was a starter code for integrating Codereadr MCP with OpenAI Agents SDK to build a functional AI agent that can interact with Codereadr.

Key features:

  • Hosted MCP tool integration through Composio's Tool Router
  • SQLite session persistence for conversation history
  • Simple async chat loop for interactive testing
You can extend this by adding more toolkits, implementing custom business logic, or building a web interface around the agent.

How to build Codereadr MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Codereadr MCP?

With a standalone Codereadr MCP server, the agents and LLMs can only access a fixed set of Codereadr tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Codereadr and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with OpenAI Agents SDK?

Yes, you can. OpenAI Agents SDK fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Codereadr tools.

Can I manage the permissions and scopes for Codereadr while using Tool Router?

Yes, absolutely. You can configure which Codereadr scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Codereadr data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.