How to integrate Codereadr MCP with CrewAI

Framework Integration Gradient
Codereadr Logo
CrewAI Logo
divider

Introduction

This guide walks you through connecting Codereadr to CrewAI using the Composio tool router. By the end, you'll have a working Codereadr agent that can create a new barcode scanning service, configure survey questions after each scan, enable kiosk mode for unattended device, delete a codereadr database by id through natural language commands.

This guide will help you understand how to give your CrewAI agent real control over a Codereadr account through Composio's Codereadr MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get a Composio API key and configure your Codereadr connection
  • Set up CrewAI with an MCP enabled agent
  • Create a Tool Router session or standalone MCP server for Codereadr
  • Build a conversational loop where your agent can execute Codereadr operations

What is CrewAI?

CrewAI is a powerful framework for building multi-agent AI systems. It provides primitives for defining agents with specific roles, creating tasks, and orchestrating workflows through crews.

Key features include:

  • Agent Roles: Define specialized agents with specific goals and backstories
  • Task Management: Create tasks with clear descriptions and expected outputs
  • Crew Orchestration: Combine agents and tasks into collaborative workflows
  • MCP Integration: Connect to external tools through Model Context Protocol

What is the Codereadr MCP server, and what's possible with it?

The Codereadr MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Codereadr account. It provides structured and secure access to your data collection and barcode scanning workflows, so your agent can create services, configure scan workflows, manage databases, and automate data collection processes for you.

  • Automated service and workflow setup: Let your agent create new CodeREADr services and configure custom workflows for scanning, picking, delivery, and receiving tasks.
  • Custom data collection form creation: Easily set up or modify data capture forms by adding or deleting custom questions after each scan.
  • Real-time scan integration: Configure Direct Scan URLs, postback endpoints, or Google Sheets connectors to forward scan results instantly to your desired platforms.
  • Device and database management: Direct your agent to delete devices or entire databases when they are no longer needed, streamlining your data environment.
  • Kiosk and unattended scanning configuration: Enable and fine-tune Kiosk Mode for unattended or dedicated scanning stations to support high-volume operations.

Supported Tools & Triggers

Tools
Collect Data With QuestionsTool to configure data collection forms by adding custom questions.
Configure CodeREADr ConnectorHelper to guide configuring the CodeREADr Connector for Google Sheets.
Configure Direct Scan URL (DSU)Tool to configure a Direct Scan URL (DSU).
Configure CodeREADr Kiosk ModeTool to enable and configure Kiosk Mode for unattended scanning.
Configure Picking, Delivery & Receiving AppTool to configure the complete picking, delivery, and receiving workflow.
Configure CodeREADr Postback URLTool to configure a real-time postback URL for a CodeREADr service.
Create CodeREADr ServiceTool to create a new workflow configuration (service) for scanning tasks.
Delete CodeREADr DatabaseTool to delete an existing CodeREADr database.
Delete DeviceTool to delete a device.
Delete Custom QuestionTool to delete an existing custom question.
Delete CodeREADr ServiceTool to delete an existing CodeREADr service.
Delete CodeREADr UserTool to delete an existing user account.
Generate Scan LinkTool to generate a CodeREADr scan link URI.
List Supported Barcode TypesTool to list supported barcode types.
Manage CodeREADr Response FieldsTool to create or update response fields returned with scan data.
Retrieve CodeREADr DatabasesTool to list all validation databases.
Retrieve DevicesTool to fetch registered devices.
Retrieve bulk scan recordsTool to retrieve bulk scan records.
Retrieve CodeREADr ServicesTool to list all services.
Set Admin PINTool to set or update the administrator PIN for Kiosk Mode.
Update CodeREADr QuestionTool to update an existing custom question.
Update CodeREADr ServiceTool to update an existing service configuration.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Python 3.9 or higher
  • A Composio account and API key
  • A Codereadr connection authorized in Composio
  • An OpenAI API key for the CrewAI LLM
  • Basic familiarity with Python

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

bash
pip install composio crewai crewai-tools python-dotenv
What's happening:
  • composio connects your agent to Codereadr via MCP
  • crewai provides Agent, Task, Crew, and LLM primitives
  • crewai-tools includes MCP helpers
  • python-dotenv loads environment variables from .env

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
USER_ID=your_user_id_here
OPENAI_API_KEY=your_openai_api_key_here

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates with Composio
  • USER_ID scopes the session to your account
  • OPENAI_API_KEY lets CrewAI use your chosen OpenAI model

Import dependencies

python
from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter  # optional import if you plan to adapt tools
from composio import Composio
from dotenv import load_dotenv
import os
from crewai.mcp import MCPServerHTTP

load_dotenv()
What's happening:
  • CrewAI classes define agents and tasks, and run the workflow
  • MCPServerHTTP connects the agent to an MCP endpoint
  • Composio will give you a short lived Codereadr MCP URL

Create a Composio Tool Router session for Codereadr

python
composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
session = composio.create(
    user_id=os.getenv("USER_ID"),
    toolkits=["codereadr"],
)
url = session.mcp.url
What's happening:
  • You create a Codereadr only session through Composio
  • Composio returns an MCP HTTP URL that exposes Codereadr tools

Configure the LLM

python
llm = LLM(
    model="gpt-5-mini",
    api_key=os.getenv("OPENAI_API_KEY"),
)
What's happening:
  • CrewAI will call this LLM for planning and responses
  • You can swap in a different model if needed

Attach the MCP server and create the agent

python
toolkit_agent = Agent(
    role="Codereadr Assistant",
    goal="Help users interact with Codereadr through natural language commands",
    backstory=(
        "You are an expert assistant with access to Codereadr tools. "
        "You can perform various Codereadr operations on behalf of the user."
    ),
    mcps=[
        MCPServerHTTP(
            url=url,
            streamable=True,
            cache_tools_list=True,
            headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")},
        ),
    ],
    llm=llm,
    verbose=True,
    max_iter=10,
)
What's happening:
  • MCPServerHTTP connects the agent to the Codereadr MCP endpoint
  • cache_tools_list saves a tools catalog for faster subsequent runs
  • verbose helps you see what the agent is doing

Add a REPL loop with Task and Crew

python
print("Chat started! Type 'exit' or 'quit' to end.\n")
print("Try asking the agent to perform Codereadr operations.\n")

conversation_context = ""

while True:
    user_input = input("You: ").strip()

    if user_input.lower() in ["exit", "quit", "bye"]:
        print("\nGoodbye!")
        break

    if not user_input:
        continue

    conversation_context += f"\nUser: {user_input}\n"
    print("\nAgent is thinking...\n")

    task = Task(
        description=(
            f"Based on the conversation history:\n{conversation_context}\n\n"
            f"Current user request: {user_input}\n\n"
            f"Please help the user with their Codereadr related request."
        ),
        expected_output="A helpful response addressing the user's request",
        agent=toolkit_agent,
    )

    crew = Crew(
        agents=[toolkit_agent],
        tasks=[task],
        verbose=False,
    )

    result = crew.kickoff()
    response = str(result)

    conversation_context += f"Agent: {response}\n"
    print(f"Agent: {response}\n")
What's happening:
  • You build a simple chat loop and keep a running context
  • Each user turn becomes a Task handled by the same agent
  • Crew executes the task and returns a response

Run the application

python
if __name__ == "__main__":
    main()
What's happening:
  • Standard Python entry point so you can run python crewai_codereadr_agent.py

Complete Code

Here's the complete code to get you started with Codereadr and CrewAI:

python
# file: crewai_codereadr_agent.py
from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter  # optional
from composio import Composio
from dotenv import load_dotenv
import os
from crewai.mcp import MCPServerHTTP

load_dotenv()

def main():
    # Initialize Composio and create a Codereadr session
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
    session = composio.create(
        user_id=os.getenv("USER_ID"),
        toolkits=["codereadr"],
    )
    url = session.mcp.url

    # Configure LLM
    llm = LLM(
        model="gpt-5-mini",
        api_key=os.getenv("OPENAI_API_KEY"),
    )

    # Create Codereadr assistant agent
    toolkit_agent = Agent(
        role="Codereadr Assistant",
        goal="Help users interact with Codereadr through natural language commands",
        backstory=(
            "You are an expert assistant with access to Codereadr tools. "
            "You can perform various Codereadr operations on behalf of the user."
        ),
        mcps=[
            MCPServerHTTP(
                url=url,
                streamable=True,
                cache_tools_list=True,
                headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")},
            ),
        ],
        llm=llm,
        verbose=True,
        max_iter=10,
    )

    print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
    print("Try asking the agent to perform Codereadr operations.\n")

    conversation_context = ""

    while True:
        user_input = input("You: ").strip()

        if user_input.lower() in ["exit", "quit", "bye"]:
            print("\nGoodbye!")
            break

        if not user_input:
            continue

        conversation_context += f"\nUser: {user_input}\n"
        print("\nAgent is thinking...\n")

        task = Task(
            description=(
                f"Based on the conversation history:\n{conversation_context}\n\n"
                f"Current user request: {user_input}\n\n"
                f"Please help the user with their Codereadr related request."
            ),
            expected_output="A helpful response addressing the user's request",
            agent=toolkit_agent,
        )

        crew = Crew(
            agents=[toolkit_agent],
            tasks=[task],
            verbose=False,
        )

        result = crew.kickoff()
        response = str(result)

        conversation_context += f"Agent: {response}\n"
        print(f"Agent: {response}\n")

if __name__ == "__main__":
    main()

Conclusion

You now have a CrewAI agent connected to Codereadr through Composio's Tool Router. The agent can perform Codereadr operations through natural language commands. Next steps:
  • Add role-specific instructions to customize agent behavior
  • Plug in more toolkits for multi-app workflows
  • Chain tasks for complex multi-step operations

How to build Codereadr MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Codereadr MCP?

With a standalone Codereadr MCP server, the agents and LLMs can only access a fixed set of Codereadr tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Codereadr and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with CrewAI?

Yes, you can. CrewAI fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Codereadr tools.

Can I manage the permissions and scopes for Codereadr while using Tool Router?

Yes, absolutely. You can configure which Codereadr scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Codereadr data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.