How to integrate Zoominfo MCP with CrewAI

Framework Integration Gradient
Zoominfo Logo
CrewAI Logo
divider

Introduction

This guide walks you through connecting Zoominfo to CrewAI using the Composio tool router. By the end, you'll have a working Zoominfo agent that can find companies in new york with over 500 employees, enrich this contact with latest job title, list recent news about target accounts, show intent signals for tech industry leads through natural language commands.

This guide will help you understand how to give your CrewAI agent real control over a Zoominfo account through Composio's Zoominfo MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get a Composio API key and configure your Zoominfo connection
  • Set up CrewAI with an MCP enabled agent
  • Create a Tool Router session or standalone MCP server for Zoominfo
  • Build a conversational loop where your agent can execute Zoominfo operations

What is CrewAI?

CrewAI is a powerful framework for building multi-agent AI systems. It provides primitives for defining agents with specific roles, creating tasks, and orchestrating workflows through crews.

Key features include:

  • Agent Roles: Define specialized agents with specific goals and backstories
  • Task Management: Create tasks with clear descriptions and expected outputs
  • Crew Orchestration: Combine agents and tasks into collaborative workflows
  • MCP Integration: Connect to external tools through Model Context Protocol

What is the Zoominfo MCP server, and what's possible with it?

The Zoominfo MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Zoominfo account. It provides structured and secure access to rich B2B sales intelligence, so your agent can search companies, enrich contact and company data, analyze intent signals, and surface actionable go-to-market insights for you.

  • Company and contact data enrichment: Instantly have your agent pull detailed profiles, firmographics, and contact information for any business or person of interest.
  • Smart company and contact search: Let your agent find the right leads by searching Zoominfo's vast database using criteria like location, industry, and role.
  • Intent signal analysis: Enable your agent to analyze buying intent signals and help prioritize outreach based on real-time market activity.
  • Technology and news enrichment: Ask your agent to uncover what technologies a company uses or find the latest news and scoops about prospects and clients.
  • Location-based prospecting: Have your agent filter and enrich location details to support precise territory planning and targeted campaigns.

Supported Tools & Triggers

Tools
Company EnrichCompany enrich
Contact EnrichContact enrich
Intent EnrichIntent enrich
Location EnrichLocation enrich
News EnrichNews enrich
Scoop EnrichScoop enrich
Technology EnrichTechnology enrich
Company SearchReturns a list of companies from zoominfo's data which meet the specified search criteria.
Company Search InputsReturns a list of fields you can use as input for the company search action.
Contact SearchReturns a list of contacts from zoominfo's data that meet the specified search criteria.
Contact Search InputsReturns a list of fields you can use as input for the contact search action.
Intent SearchUse this endpoint to search for companies and recommended contacts based on intent data.
Intent Search InputsReturns a list of fields you can use as input for the intent action.
News SearchReturns a list of news articles from zoominfo's data which meet the specified search criteria.
News Search InputsReturns a list of fields you can use as input for the news search endpoint.
Scoop SearchReturns a list of scoops from zoominfo's data which meet the specified search criteria.
Scoop Search InputsReturns a list of fields you can use as input for the scoop search action.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Python 3.9 or higher
  • A Composio account and API key
  • A Zoominfo connection authorized in Composio
  • An OpenAI API key for the CrewAI LLM
  • Basic familiarity with Python

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

bash
pip install composio crewai crewai-tools python-dotenv
What's happening:
  • composio connects your agent to Zoominfo via MCP
  • crewai provides Agent, Task, Crew, and LLM primitives
  • crewai-tools includes MCP helpers
  • python-dotenv loads environment variables from .env

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
USER_ID=your_user_id_here
OPENAI_API_KEY=your_openai_api_key_here

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates with Composio
  • USER_ID scopes the session to your account
  • OPENAI_API_KEY lets CrewAI use your chosen OpenAI model

Import dependencies

python
from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter  # optional import if you plan to adapt tools
from composio import Composio
from dotenv import load_dotenv
import os
from crewai.mcp import MCPServerHTTP

load_dotenv()
What's happening:
  • CrewAI classes define agents and tasks, and run the workflow
  • MCPServerHTTP connects the agent to an MCP endpoint
  • Composio will give you a short lived Zoominfo MCP URL

Create a Composio Tool Router session for Zoominfo

python
composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
session = composio.create(
    user_id=os.getenv("USER_ID"),
    toolkits=["zoominfo"],
)
url = session.mcp.url
What's happening:
  • You create a Zoominfo only session through Composio
  • Composio returns an MCP HTTP URL that exposes Zoominfo tools

Configure the LLM

python
llm = LLM(
    model="gpt-5-mini",
    api_key=os.getenv("OPENAI_API_KEY"),
)
What's happening:
  • CrewAI will call this LLM for planning and responses
  • You can swap in a different model if needed

Attach the MCP server and create the agent

python
toolkit_agent = Agent(
    role="Zoominfo Assistant",
    goal="Help users interact with Zoominfo through natural language commands",
    backstory=(
        "You are an expert assistant with access to Zoominfo tools. "
        "You can perform various Zoominfo operations on behalf of the user."
    ),
    mcps=[
        MCPServerHTTP(
            url=url,
            streamable=True,
            cache_tools_list=True,
            headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")},
        ),
    ],
    llm=llm,
    verbose=True,
    max_iter=10,
)
What's happening:
  • MCPServerHTTP connects the agent to the Zoominfo MCP endpoint
  • cache_tools_list saves a tools catalog for faster subsequent runs
  • verbose helps you see what the agent is doing

Add a REPL loop with Task and Crew

python
print("Chat started! Type 'exit' or 'quit' to end.\n")
print("Try asking the agent to perform Zoominfo operations.\n")

conversation_context = ""

while True:
    user_input = input("You: ").strip()

    if user_input.lower() in ["exit", "quit", "bye"]:
        print("\nGoodbye!")
        break

    if not user_input:
        continue

    conversation_context += f"\nUser: {user_input}\n"
    print("\nAgent is thinking...\n")

    task = Task(
        description=(
            f"Based on the conversation history:\n{conversation_context}\n\n"
            f"Current user request: {user_input}\n\n"
            f"Please help the user with their Zoominfo related request."
        ),
        expected_output="A helpful response addressing the user's request",
        agent=toolkit_agent,
    )

    crew = Crew(
        agents=[toolkit_agent],
        tasks=[task],
        verbose=False,
    )

    result = crew.kickoff()
    response = str(result)

    conversation_context += f"Agent: {response}\n"
    print(f"Agent: {response}\n")
What's happening:
  • You build a simple chat loop and keep a running context
  • Each user turn becomes a Task handled by the same agent
  • Crew executes the task and returns a response

Run the application

python
if __name__ == "__main__":
    main()
What's happening:
  • Standard Python entry point so you can run python crewai_zoominfo_agent.py

Complete Code

Here's the complete code to get you started with Zoominfo and CrewAI:

python
# file: crewai_zoominfo_agent.py
from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter  # optional
from composio import Composio
from dotenv import load_dotenv
import os
from crewai.mcp import MCPServerHTTP

load_dotenv()

def main():
    # Initialize Composio and create a Zoominfo session
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
    session = composio.create(
        user_id=os.getenv("USER_ID"),
        toolkits=["zoominfo"],
    )
    url = session.mcp.url

    # Configure LLM
    llm = LLM(
        model="gpt-5-mini",
        api_key=os.getenv("OPENAI_API_KEY"),
    )

    # Create Zoominfo assistant agent
    toolkit_agent = Agent(
        role="Zoominfo Assistant",
        goal="Help users interact with Zoominfo through natural language commands",
        backstory=(
            "You are an expert assistant with access to Zoominfo tools. "
            "You can perform various Zoominfo operations on behalf of the user."
        ),
        mcps=[
            MCPServerHTTP(
                url=url,
                streamable=True,
                cache_tools_list=True,
                headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")},
            ),
        ],
        llm=llm,
        verbose=True,
        max_iter=10,
    )

    print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
    print("Try asking the agent to perform Zoominfo operations.\n")

    conversation_context = ""

    while True:
        user_input = input("You: ").strip()

        if user_input.lower() in ["exit", "quit", "bye"]:
            print("\nGoodbye!")
            break

        if not user_input:
            continue

        conversation_context += f"\nUser: {user_input}\n"
        print("\nAgent is thinking...\n")

        task = Task(
            description=(
                f"Based on the conversation history:\n{conversation_context}\n\n"
                f"Current user request: {user_input}\n\n"
                f"Please help the user with their Zoominfo related request."
            ),
            expected_output="A helpful response addressing the user's request",
            agent=toolkit_agent,
        )

        crew = Crew(
            agents=[toolkit_agent],
            tasks=[task],
            verbose=False,
        )

        result = crew.kickoff()
        response = str(result)

        conversation_context += f"Agent: {response}\n"
        print(f"Agent: {response}\n")

if __name__ == "__main__":
    main()

Conclusion

You now have a CrewAI agent connected to Zoominfo through Composio's Tool Router. The agent can perform Zoominfo operations through natural language commands. Next steps:
  • Add role-specific instructions to customize agent behavior
  • Plug in more toolkits for multi-app workflows
  • Chain tasks for complex multi-step operations

How to build Zoominfo MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Zoominfo MCP?

With a standalone Zoominfo MCP server, the agents and LLMs can only access a fixed set of Zoominfo tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Zoominfo and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with CrewAI?

Yes, you can. CrewAI fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Zoominfo tools.

Can I manage the permissions and scopes for Zoominfo while using Tool Router?

Yes, absolutely. You can configure which Zoominfo scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Zoominfo data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.