How to integrate Tomtom MCP with LangChain

Framework Integration Gradient
Tomtom Logo
LangChain Logo
divider

Introduction

This guide walks you through connecting Tomtom to LangChain using the Composio tool router. By the end, you'll have a working Tomtom agent that can find nearby ev charging stations with live status, calculate fastest driving route to airport, search for italian restaurants around times square, get current traffic speed on main street through natural language commands.

This guide will help you understand how to give your LangChain agent real control over a Tomtom account through Composio's Tomtom MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get and set up your OpenAI and Composio API keys
  • Connect your Tomtom project to Composio
  • Create a Tool Router MCP session for Tomtom
  • Initialize an MCP client and retrieve Tomtom tools
  • Build a LangChain agent that can interact with Tomtom
  • Set up an interactive chat interface for testing

What is LangChain?

LangChain is a framework for developing applications powered by language models. It provides tools and abstractions for building agents that can reason, use tools, and maintain conversation context.

Key features include:

  • Agent Framework: Build agents that can use tools and make decisions
  • MCP Integration: Connect to external services through Model Context Protocol adapters
  • Memory Management: Maintain conversation history across interactions
  • Multi-Provider Support: Works with OpenAI, Anthropic, and other LLM providers

What is the Tomtom MCP server, and what's possible with it?

The Tomtom MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Tomtom account. It provides structured and secure access to TomTom's advanced mapping, navigation, and location services, so your agent can perform actions like calculating routes, searching for points of interest, retrieving live traffic data, and managing map assets on your behalf.

  • Dynamic route calculation and navigation: Ask your agent to generate driving, walking, or cycling routes with waypoints and real-time traffic considerations to optimize travel plans.
  • Flexible location and place search: Let your agent perform fuzzy searches for addresses or points of interest, or find nearby locations by category such as restaurants, EV charging stations, or landmarks.
  • Real-time traffic flow and road insights: Retrieve up-to-date traffic flow data for specific road segments, helping you monitor congestion, speed trends, and plan detours proactively.
  • EV charging station availability: Check the current status and availability of EV charging stations, making it easy to plan electric vehicle journeys with confidence.
  • Map styling and asset management: Manage map fonts, styles, sprites, and copyrights to customize the look and feel of maps integrated into your applications.

Supported Tools & Triggers

Tools
List Map FontsTool to list available font asset versions for map rendering.
List Assets SpritesTool to list available sprites for a given asset version.
List map stylesTool to list available map styles.
Calculate RouteTool to calculate driving routes.
Category SearchTool to search for points of interest by category.
EV Charging Stations AvailabilityTool to retrieve ev charging station availability info.
Flow Segment DataTool to retrieve traffic flow data for a specific road segment.
Fuzzy SearchTool to perform a fuzzy search for addresses and points of interest.
List Sprite VersionsTool to list available sprite asset versions.
Get Map CopyrightsTool to retrieve copyright information for a specific map tile.
MAP_DISPLAY_RASTER_TILETool to retrieve a raster map tile for specified coordinates and zoom.
Map Display Static ImageTool to fetch a static map snapshot given center coords and zoom.
Map Display WMS GetMapTool to retrieve a map image via wms getmap.
Matrix RoutingTool to calculate travel time and distance matrix between multiple locations.
Nearby SearchTool to find points of interest near a specified location.
Points of Interest SearchTool to search for points of interest by query.
Reverse GeocodeTool to convert geographic coordinates into a human-readable address.
Structured GeocodeTool to convert structured address fields into coordinates.
Traffic IncidentsTool to retrieve detailed traffic incidents within a bounding box.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting this tutorial, make sure you have:
  • Python 3.10 or higher installed on your system
  • A Composio account with an API key
  • An OpenAI API key
  • Basic familiarity with Python and async programming

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

pip install composio-langchain langchain-mcp-adapters langchain python-dotenv

Install the required packages for LangChain with MCP support.

What's happening:

  • composio-langchain provides Composio integration for LangChain
  • langchain-mcp-adapters enables MCP client connections
  • langchain is the core agent framework
  • python-dotenv loads environment variables

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
COMPOSIO_USER_ID=your_composio_user_id_here
OPENAI_API_KEY=your_openai_api_key_here

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates your requests to Composio's API
  • COMPOSIO_USER_ID identifies the user for session management
  • OPENAI_API_KEY enables access to OpenAI's language models

Import dependencies

from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain.agents import create_agent
from dotenv import load_dotenv
from composio import Composio
import asyncio
import os

load_dotenv()
What's happening:
  • We're importing LangChain's MCP adapter and Composio SDK
  • The dotenv import loads environment variables from your .env file
  • This setup prepares the foundation for connecting LangChain with Tomtom functionality through MCP

Initialize Composio client

async def main():
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))

    if not os.getenv("COMPOSIO_API_KEY"):
        raise ValueError("COMPOSIO_API_KEY is not set")
    if not os.getenv("COMPOSIO_USER_ID"):
        raise ValueError("COMPOSIO_USER_ID is not set")
What's happening:
  • We're loading the COMPOSIO_API_KEY from environment variables and validating it exists
  • Creating a Composio instance that will manage our connection to Tomtom tools
  • Validating that COMPOSIO_USER_ID is also set before proceeding

Create a Tool Router session

# Create Tool Router session for Tomtom
session = composio.create(
    user_id=os.getenv("COMPOSIO_USER_ID"),
    toolkits=['tomtom']
)

url = session.mcp.url
What's happening:
  • We're creating a Tool Router session that gives your agent access to Tomtom tools
  • The create method takes the user ID and specifies which toolkits should be available
  • The returned session.mcp.url is the MCP server URL that your agent will use
  • This approach allows the agent to dynamically load and use Tomtom tools as needed

Configure the agent with the MCP URL

client = MultiServerMCPClient({
    "tomtom-agent": {
        "transport": "streamable_http",
        "url": session.mcp.url,
        "headers": {
            "x-api-key": os.getenv("COMPOSIO_API_KEY")
        }
    }
})

tools = await client.get_tools()

agent = create_agent("gpt-5", tools)
What's happening:
  • We're creating a MultiServerMCPClient that connects to our Tomtom MCP server via HTTP
  • The client is configured with a name and the URL from our Tool Router session
  • get_tools() retrieves all available Tomtom tools that the agent can use
  • We're creating a LangChain agent using the GPT-5 model

Set up interactive chat interface

conversation_history = []

print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
print("Ask any Tomtom related question or task to the agent.\n")

while True:
    user_input = input("You: ").strip()

    if user_input.lower() in ['exit', 'quit', 'bye']:
        print("\nGoodbye!")
        break

    if not user_input:
        continue

    conversation_history.append({"role": "user", "content": user_input})
    print("\nAgent is thinking...\n")

    response = await agent.ainvoke({"messages": conversation_history})
    conversation_history = response['messages']
    final_response = response['messages'][-1].content
    print(f"Agent: {final_response}\n")
What's happening:
  • We initialize an empty conversation_history list to maintain context across interactions
  • A while loop continuously accepts user input from the command line
  • When a user types a message, it's added to the conversation history and sent to the agent
  • The agent processes the request using the ainvoke() method with the full conversation history
  • Users can type 'exit', 'quit', or 'bye' to end the chat session gracefully

Run the application

if __name__ == "__main__":
    asyncio.run(main())
What's happening:
  • We call the main() function using asyncio.run() to start the application

Complete Code

Here's the complete code to get you started with Tomtom and LangChain:

from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain.agents import create_agent
from dotenv import load_dotenv
from composio import Composio
import asyncio
import os

load_dotenv()

async def main():
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
    
    if not os.getenv("COMPOSIO_API_KEY"):
        raise ValueError("COMPOSIO_API_KEY is not set")
    if not os.getenv("COMPOSIO_USER_ID"):
        raise ValueError("COMPOSIO_USER_ID is not set")
    
    session = composio.create(
        user_id=os.getenv("COMPOSIO_USER_ID"),
        toolkits=['tomtom']
    )

    url = session.mcp.url
    
    client = MultiServerMCPClient({
        "tomtom-agent": {
            "transport": "streamable_http",
            "url": url,
            "headers": {
                "x-api-key": os.getenv("COMPOSIO_API_KEY")
            }
        }
    })
    
    tools = await client.get_tools()
  
    agent = create_agent("gpt-5", tools)
    
    conversation_history = []
    
    print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
    print("Ask any Tomtom related question or task to the agent.\n")
    
    while True:
        user_input = input("You: ").strip()
        
        if user_input.lower() in ['exit', 'quit', 'bye']:
            print("\nGoodbye!")
            break
        
        if not user_input:
            continue
        
        conversation_history.append({"role": "user", "content": user_input})
        print("\nAgent is thinking...\n")
        
        response = await agent.ainvoke({"messages": conversation_history})
        conversation_history = response['messages']
        final_response = response['messages'][-1].content
        print(f"Agent: {final_response}\n")

if __name__ == "__main__":
    asyncio.run(main())

Conclusion

You've successfully built a LangChain agent that can interact with Tomtom through Composio's Tool Router.

Key features of this implementation:

  • Dynamic tool loading through Composio's Tool Router
  • Conversation history maintenance for context-aware responses
  • Async Python provides clean, efficient execution of agent workflows
You can extend this further by adding error handling, implementing specific business logic, or integrating additional Composio toolkits to create multi-app workflows.

How to build Tomtom MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Tomtom MCP?

With a standalone Tomtom MCP server, the agents and LLMs can only access a fixed set of Tomtom tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Tomtom and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with LangChain?

Yes, you can. LangChain fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Tomtom tools.

Can I manage the permissions and scopes for Tomtom while using Tool Router?

Yes, absolutely. You can configure which Tomtom scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Tomtom data and credentials are handled as safely as possible.

Used by agents from

Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.