How to integrate Toggl MCP with LangChain

Framework Integration Gradient
Toggl Logo
LangChain Logo
divider

Introduction

This guide walks you through connecting Toggl to LangChain using the Composio tool router. By the end, you'll have a working Toggl agent that can start a new time entry for coding, list all clients in my workspace, get details of my current running timer, create a new project for marketing through natural language commands.

This guide will help you understand how to give your LangChain agent real control over a Toggl account through Composio's Toggl MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get and set up your OpenAI and Composio API keys
  • Connect your Toggl project to Composio
  • Create a Tool Router MCP session for Toggl
  • Initialize an MCP client and retrieve Toggl tools
  • Build a LangChain agent that can interact with Toggl
  • Set up an interactive chat interface for testing

What is LangChain?

LangChain is a framework for developing applications powered by language models. It provides tools and abstractions for building agents that can reason, use tools, and maintain conversation context.

Key features include:

  • Agent Framework: Build agents that can use tools and make decisions
  • MCP Integration: Connect to external services through Model Context Protocol adapters
  • Memory Management: Maintain conversation history across interactions
  • Multi-Provider Support: Works with OpenAI, Anthropic, and other LLM providers

What is the Toggl MCP server, and what's possible with it?

The Toggl MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Toggl account. It provides structured and secure access to your time tracking data, so your agent can perform actions like logging time entries, managing clients and projects, handling tags, and retrieving detailed activity reports on your behalf.

  • Automated time entry management: Let your agent start, stop, and create new time entries with precise details, making it easy to track your work hours hands-free.
  • Client and project organization: Easily add new clients or projects, fetch client details, or remove outdated clients to keep your workspace up to date and well-structured.
  • Real-time activity tracking: Ask your agent to retrieve the currently running time entry or list recent activities, so you always know where your time is going.
  • Tag management and organization: Automatically create or delete tags to categorize your time entries, helping you analyze how your time is spent across different tasks.
  • Comprehensive workspace administration: Have your agent create organizations, set up workspaces, and ensure all your time tracking infrastructure is ready to go without manual setup.

Supported Tools & Triggers

Tools
Create ClientTool to create a new client in a workspace.
Create OrganizationTool to create a new organization with a default workspace.
Create ProjectTool to create a new project in a workspace.
Create TagTool to create a new tag in a workspace.
Create Time EntryTool to create a new time entry in the specified workspace.
Delete Toggl ClientTool to delete a client in toggl.
Delete TagTool to delete a tag from a workspace.
Get Client DetailsTool to retrieve details of a specific client.
Get Current Time EntryTool to retrieve the current running time entry for the authenticated user.
List ClientsTool to retrieve a list of clients from a toggl workspace.
Get Organization DetailsTool to retrieve details of a specific organization by its id.
Get Organization GroupsTool to retrieve list of groups in a specified organization.
Get Organization UsersTool to retrieve all users in a toggl organization by organization id.
Get Project DetailsTool to retrieve details of a specific project.
Get ProjectsTool to retrieve a list of projects from a toggl workspace.
Get TagsTool to retrieve all tags in a toggl workspace.
List TasksTool to list tasks in a workspace or within a specific project.
Get Time EntriesTool to list the latest time entries for the authenticated user.
Get Time EntryTool to retrieve a specific time entry by its id.
Get User ClientsTool to fetch the list of clients accessible by the authenticated user.
Get User PreferencesTool to retrieve current user's preferences and alpha features.
Get User ProjectsTool to retrieve all projects for the authenticated user.
Get User TagsTool to retrieve tags associated with the current user.
Get User TasksTool to retrieve tasks from projects in which the authenticated user is participating.
Get User WorkspacesTool to retrieve all workspaces the authenticated user belongs to.
Get Workspace DetailsTool to retrieve details of a specific workspace.
Get Workspace PreferencesTool to retrieve workspace preferences.
Get Workspace UsersTool to retrieve all users in a toggl workspace by workspace id.
Stop Time EntryTool to stop a running time entry in a workspace.
Update TagTool to update an existing tag in a specified workspace.
Update ClientTool to update details of a specific client.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting this tutorial, make sure you have:
  • Python 3.10 or higher installed on your system
  • A Composio account with an API key
  • An OpenAI API key
  • Basic familiarity with Python and async programming

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

pip install composio-langchain langchain-mcp-adapters langchain python-dotenv

Install the required packages for LangChain with MCP support.

What's happening:

  • composio-langchain provides Composio integration for LangChain
  • langchain-mcp-adapters enables MCP client connections
  • langchain is the core agent framework
  • python-dotenv loads environment variables

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
COMPOSIO_USER_ID=your_composio_user_id_here
OPENAI_API_KEY=your_openai_api_key_here

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates your requests to Composio's API
  • COMPOSIO_USER_ID identifies the user for session management
  • OPENAI_API_KEY enables access to OpenAI's language models

Import dependencies

from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain.agents import create_agent
from dotenv import load_dotenv
from composio import Composio
import asyncio
import os

load_dotenv()
What's happening:
  • We're importing LangChain's MCP adapter and Composio SDK
  • The dotenv import loads environment variables from your .env file
  • This setup prepares the foundation for connecting LangChain with Toggl functionality through MCP

Initialize Composio client

async def main():
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))

    if not os.getenv("COMPOSIO_API_KEY"):
        raise ValueError("COMPOSIO_API_KEY is not set")
    if not os.getenv("COMPOSIO_USER_ID"):
        raise ValueError("COMPOSIO_USER_ID is not set")
What's happening:
  • We're loading the COMPOSIO_API_KEY from environment variables and validating it exists
  • Creating a Composio instance that will manage our connection to Toggl tools
  • Validating that COMPOSIO_USER_ID is also set before proceeding

Create a Tool Router session

# Create Tool Router session for Toggl
session = composio.create(
    user_id=os.getenv("COMPOSIO_USER_ID"),
    toolkits=['toggl']
)

url = session.mcp.url
What's happening:
  • We're creating a Tool Router session that gives your agent access to Toggl tools
  • The create method takes the user ID and specifies which toolkits should be available
  • The returned session.mcp.url is the MCP server URL that your agent will use
  • This approach allows the agent to dynamically load and use Toggl tools as needed

Configure the agent with the MCP URL

client = MultiServerMCPClient({
    "toggl-agent": {
        "transport": "streamable_http",
        "url": session.mcp.url,
        "headers": {
            "x-api-key": os.getenv("COMPOSIO_API_KEY")
        }
    }
})

tools = await client.get_tools()

agent = create_agent("gpt-5", tools)
What's happening:
  • We're creating a MultiServerMCPClient that connects to our Toggl MCP server via HTTP
  • The client is configured with a name and the URL from our Tool Router session
  • get_tools() retrieves all available Toggl tools that the agent can use
  • We're creating a LangChain agent using the GPT-5 model

Set up interactive chat interface

conversation_history = []

print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
print("Ask any Toggl related question or task to the agent.\n")

while True:
    user_input = input("You: ").strip()

    if user_input.lower() in ['exit', 'quit', 'bye']:
        print("\nGoodbye!")
        break

    if not user_input:
        continue

    conversation_history.append({"role": "user", "content": user_input})
    print("\nAgent is thinking...\n")

    response = await agent.ainvoke({"messages": conversation_history})
    conversation_history = response['messages']
    final_response = response['messages'][-1].content
    print(f"Agent: {final_response}\n")
What's happening:
  • We initialize an empty conversation_history list to maintain context across interactions
  • A while loop continuously accepts user input from the command line
  • When a user types a message, it's added to the conversation history and sent to the agent
  • The agent processes the request using the ainvoke() method with the full conversation history
  • Users can type 'exit', 'quit', or 'bye' to end the chat session gracefully

Run the application

if __name__ == "__main__":
    asyncio.run(main())
What's happening:
  • We call the main() function using asyncio.run() to start the application

Complete Code

Here's the complete code to get you started with Toggl and LangChain:

from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain.agents import create_agent
from dotenv import load_dotenv
from composio import Composio
import asyncio
import os

load_dotenv()

async def main():
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
    
    if not os.getenv("COMPOSIO_API_KEY"):
        raise ValueError("COMPOSIO_API_KEY is not set")
    if not os.getenv("COMPOSIO_USER_ID"):
        raise ValueError("COMPOSIO_USER_ID is not set")
    
    session = composio.create(
        user_id=os.getenv("COMPOSIO_USER_ID"),
        toolkits=['toggl']
    )

    url = session.mcp.url
    
    client = MultiServerMCPClient({
        "toggl-agent": {
            "transport": "streamable_http",
            "url": url,
            "headers": {
                "x-api-key": os.getenv("COMPOSIO_API_KEY")
            }
        }
    })
    
    tools = await client.get_tools()
  
    agent = create_agent("gpt-5", tools)
    
    conversation_history = []
    
    print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
    print("Ask any Toggl related question or task to the agent.\n")
    
    while True:
        user_input = input("You: ").strip()
        
        if user_input.lower() in ['exit', 'quit', 'bye']:
            print("\nGoodbye!")
            break
        
        if not user_input:
            continue
        
        conversation_history.append({"role": "user", "content": user_input})
        print("\nAgent is thinking...\n")
        
        response = await agent.ainvoke({"messages": conversation_history})
        conversation_history = response['messages']
        final_response = response['messages'][-1].content
        print(f"Agent: {final_response}\n")

if __name__ == "__main__":
    asyncio.run(main())

Conclusion

You've successfully built a LangChain agent that can interact with Toggl through Composio's Tool Router.

Key features of this implementation:

  • Dynamic tool loading through Composio's Tool Router
  • Conversation history maintenance for context-aware responses
  • Async Python provides clean, efficient execution of agent workflows
You can extend this further by adding error handling, implementing specific business logic, or integrating additional Composio toolkits to create multi-app workflows.

How to build Toggl MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Toggl MCP?

With a standalone Toggl MCP server, the agents and LLMs can only access a fixed set of Toggl tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Toggl and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with LangChain?

Yes, you can. LangChain fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Toggl tools.

Can I manage the permissions and scopes for Toggl while using Tool Router?

Yes, absolutely. You can configure which Toggl scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Toggl data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.