How to integrate Textrazor MCP with CrewAI

Framework Integration Gradient
Textrazor Logo
CrewAI Logo
divider

Introduction

This guide walks you through connecting Textrazor to CrewAI using the Composio tool router. By the end, you'll have a working Textrazor agent that can extract named entities from this news article, summarize key phrases in customer reviews, classify support tickets by topic automatically, analyze grammatical structure of this sentence through natural language commands.

This guide will help you understand how to give your CrewAI agent real control over a Textrazor account through Composio's Textrazor MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get a Composio API key and configure your Textrazor connection
  • Set up CrewAI with an MCP enabled agent
  • Create a Tool Router session or standalone MCP server for Textrazor
  • Build a conversational loop where your agent can execute Textrazor operations

What is CrewAI?

CrewAI is a powerful framework for building multi-agent AI systems. It provides primitives for defining agents with specific roles, creating tasks, and orchestrating workflows through crews.

Key features include:

  • Agent Roles: Define specialized agents with specific goals and backstories
  • Task Management: Create tasks with clear descriptions and expected outputs
  • Crew Orchestration: Combine agents and tasks into collaborative workflows
  • MCP Integration: Connect to external tools through Model Context Protocol

What is the Textrazor MCP server, and what's possible with it?

The Textrazor MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Textrazor account. It provides structured and secure access to advanced natural language processing features, so your agent can extract entities, classify content, analyze grammar, and understand relationships within text—all automatically and at scale.

  • Entity and relationship extraction: Enable your agent to identify and classify people, places, organizations, and relationships from any text, powering intelligent content analysis and knowledge graph building.
  • Text classification and categorization: Automatically categorize documents, articles, or snippets using built-in or custom classifiers, making it easy to sort and organize large volumes of text data.
  • Grammatical and dependency analysis: Let your agent parse sentence structure, analyze grammatical relationships, and build dependency trees to support advanced linguistic understanding and text analytics.
  • Custom dictionary and classifier management: Allow the agent to create and update custom entity dictionaries and classifiers, tailoring analysis to specialized domains or business needs.
  • Phrase extraction and sentiment detection: Extract key phrases, multi-word expressions, and even detect logical entailments or word senses, enabling deeper insights from any written content.

Supported Tools & Triggers

Tools
Get Account InformationThis tool retrieves comprehensive information about a textrazor account, providing essential details about the account's status, usage, and limits.
Classify TextThis tool will classify text into predefined categories using textrazor's classification capabilities.
Manage Custom ClassifiersThis tool manages custom classifiers in textrazor, allowing users to create, update, and manage custom classification categories.
Analyze Dependency TreesThe dependencytreesaction analyzes the grammatical relationships between words in text by creating dependency trees.
Dictionary ManagerThe textrazor dictionary manager tool allows users to create, update, and manage custom entity dictionaries in textrazor.
Extract Entailments from TextThis tool extracts entailments from text using textrazor's api.
Extract Named Entities from TextExtract named entities (people, places, companies, etc.
Extract Phrases from TextThe extractphrases action extracts meaningful phrases from input text using textrazor's phrase extraction capability.
Extract Grammatical Relations from TextThis tool extracts grammatical relations between words in the text.
Extract Word SensesThis tool performs word sense disambiguation on the input text by identifying the most likely meanings of words in context.
Spelling CorrectionThis tool performs spelling correction on the provided text using textrazor's deep spelling correction system.
Analyze Content with TextRazorA comprehensive content analysis tool that combines multiple textrazor extractors to perform a complete analysis of the input text.
Extract Topics from TextA tool to extract topics from text using textrazor's topic extraction capabilities.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Python 3.9 or higher
  • A Composio account and API key
  • A Textrazor connection authorized in Composio
  • An OpenAI API key for the CrewAI LLM
  • Basic familiarity with Python

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

bash
pip install composio crewai crewai-tools python-dotenv
What's happening:
  • composio connects your agent to Textrazor via MCP
  • crewai provides Agent, Task, Crew, and LLM primitives
  • crewai-tools includes MCP helpers
  • python-dotenv loads environment variables from .env

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
USER_ID=your_user_id_here
OPENAI_API_KEY=your_openai_api_key_here

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates with Composio
  • USER_ID scopes the session to your account
  • OPENAI_API_KEY lets CrewAI use your chosen OpenAI model

Import dependencies

python
from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter  # optional import if you plan to adapt tools
from composio import Composio
from dotenv import load_dotenv
import os
from crewai.mcp import MCPServerHTTP

load_dotenv()
What's happening:
  • CrewAI classes define agents and tasks, and run the workflow
  • MCPServerHTTP connects the agent to an MCP endpoint
  • Composio will give you a short lived Textrazor MCP URL

Create a Composio Tool Router session for Textrazor

python
composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
session = composio.create(
    user_id=os.getenv("USER_ID"),
    toolkits=["textrazor"],
)
url = session.mcp.url
What's happening:
  • You create a Textrazor only session through Composio
  • Composio returns an MCP HTTP URL that exposes Textrazor tools

Configure the LLM

python
llm = LLM(
    model="gpt-5-mini",
    api_key=os.getenv("OPENAI_API_KEY"),
)
What's happening:
  • CrewAI will call this LLM for planning and responses
  • You can swap in a different model if needed

Attach the MCP server and create the agent

python
toolkit_agent = Agent(
    role="Textrazor Assistant",
    goal="Help users interact with Textrazor through natural language commands",
    backstory=(
        "You are an expert assistant with access to Textrazor tools. "
        "You can perform various Textrazor operations on behalf of the user."
    ),
    mcps=[
        MCPServerHTTP(
            url=url,
            streamable=True,
            cache_tools_list=True,
            headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")},
        ),
    ],
    llm=llm,
    verbose=True,
    max_iter=10,
)
What's happening:
  • MCPServerHTTP connects the agent to the Textrazor MCP endpoint
  • cache_tools_list saves a tools catalog for faster subsequent runs
  • verbose helps you see what the agent is doing

Add a REPL loop with Task and Crew

python
print("Chat started! Type 'exit' or 'quit' to end.\n")
print("Try asking the agent to perform Textrazor operations.\n")

conversation_context = ""

while True:
    user_input = input("You: ").strip()

    if user_input.lower() in ["exit", "quit", "bye"]:
        print("\nGoodbye!")
        break

    if not user_input:
        continue

    conversation_context += f"\nUser: {user_input}\n"
    print("\nAgent is thinking...\n")

    task = Task(
        description=(
            f"Based on the conversation history:\n{conversation_context}\n\n"
            f"Current user request: {user_input}\n\n"
            f"Please help the user with their Textrazor related request."
        ),
        expected_output="A helpful response addressing the user's request",
        agent=toolkit_agent,
    )

    crew = Crew(
        agents=[toolkit_agent],
        tasks=[task],
        verbose=False,
    )

    result = crew.kickoff()
    response = str(result)

    conversation_context += f"Agent: {response}\n"
    print(f"Agent: {response}\n")
What's happening:
  • You build a simple chat loop and keep a running context
  • Each user turn becomes a Task handled by the same agent
  • Crew executes the task and returns a response

Run the application

python
if __name__ == "__main__":
    main()
What's happening:
  • Standard Python entry point so you can run python crewai_textrazor_agent.py

Complete Code

Here's the complete code to get you started with Textrazor and CrewAI:

python
# file: crewai_textrazor_agent.py
from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter  # optional
from composio import Composio
from dotenv import load_dotenv
import os
from crewai.mcp import MCPServerHTTP

load_dotenv()

def main():
    # Initialize Composio and create a Textrazor session
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
    session = composio.create(
        user_id=os.getenv("USER_ID"),
        toolkits=["textrazor"],
    )
    url = session.mcp.url

    # Configure LLM
    llm = LLM(
        model="gpt-5-mini",
        api_key=os.getenv("OPENAI_API_KEY"),
    )

    # Create Textrazor assistant agent
    toolkit_agent = Agent(
        role="Textrazor Assistant",
        goal="Help users interact with Textrazor through natural language commands",
        backstory=(
            "You are an expert assistant with access to Textrazor tools. "
            "You can perform various Textrazor operations on behalf of the user."
        ),
        mcps=[
            MCPServerHTTP(
                url=url,
                streamable=True,
                cache_tools_list=True,
                headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")},
            ),
        ],
        llm=llm,
        verbose=True,
        max_iter=10,
    )

    print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
    print("Try asking the agent to perform Textrazor operations.\n")

    conversation_context = ""

    while True:
        user_input = input("You: ").strip()

        if user_input.lower() in ["exit", "quit", "bye"]:
            print("\nGoodbye!")
            break

        if not user_input:
            continue

        conversation_context += f"\nUser: {user_input}\n"
        print("\nAgent is thinking...\n")

        task = Task(
            description=(
                f"Based on the conversation history:\n{conversation_context}\n\n"
                f"Current user request: {user_input}\n\n"
                f"Please help the user with their Textrazor related request."
            ),
            expected_output="A helpful response addressing the user's request",
            agent=toolkit_agent,
        )

        crew = Crew(
            agents=[toolkit_agent],
            tasks=[task],
            verbose=False,
        )

        result = crew.kickoff()
        response = str(result)

        conversation_context += f"Agent: {response}\n"
        print(f"Agent: {response}\n")

if __name__ == "__main__":
    main()

Conclusion

You now have a CrewAI agent connected to Textrazor through Composio's Tool Router. The agent can perform Textrazor operations through natural language commands. Next steps:
  • Add role-specific instructions to customize agent behavior
  • Plug in more toolkits for multi-app workflows
  • Chain tasks for complex multi-step operations

How to build Textrazor MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Textrazor MCP?

With a standalone Textrazor MCP server, the agents and LLMs can only access a fixed set of Textrazor tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Textrazor and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with CrewAI?

Yes, you can. CrewAI fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Textrazor tools.

Can I manage the permissions and scopes for Textrazor while using Tool Router?

Yes, absolutely. You can configure which Textrazor scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Textrazor data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.