How to integrate Shopify MCP with Pydantic AI

Framework Integration Gradient
Shopify Logo
Pydantic AI Logo
divider

Introduction

This guide walks you through connecting Shopify to Pydantic AI using the Composio tool router. By the end, you'll have a working Shopify agent that can create a new product called 'summer t-shirt', add product id 1234 to 'holiday specials' collection, delete the image with id 5678 from product id 4321, create a new customer with email john@example.com through natural language commands.

This guide will help you understand how to give your Pydantic AI agent real control over a Shopify account through Composio's Shopify MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • How to set up your Composio API key and User ID
  • How to create a Composio Tool Router session for Shopify
  • How to attach an MCP Server to a Pydantic AI agent
  • How to stream responses and maintain chat history
  • How to build a simple REPL-style chat interface to test your Shopify workflows

What is Pydantic AI?

Pydantic AI is a Python framework for building AI agents with strong typing and validation. It leverages Pydantic's data validation capabilities to create robust, type-safe AI applications.

Key features include:

  • Type Safety: Built on Pydantic for automatic data validation
  • MCP Support: Native support for Model Context Protocol servers
  • Streaming: Built-in support for streaming responses
  • Async First: Designed for async/await patterns

What is the Shopify MCP server, and what's possible with it?

The Shopify MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Shopify account. It provides structured and secure access to your store, so your agent can perform actions like managing products, processing orders, handling collections, organizing images, and managing customers on your behalf.

  • Product management and automation: Let your agent create new products, update existing listings, or delete products from your Shopify store quickly and accurately.
  • Order creation and fulfillment: Direct your agent to generate new orders, associate them with customers, and streamline your sales process with minimal manual input.
  • Collection organization: Ask your agent to create custom collections, add products to collections, or remove collections to keep your store categories organized and up to date.
  • Product image handling: Have your agent add new images to products, count existing images for inventory tracking, or remove outdated images from your catalog.
  • Customer management: Automate the creation of new customer records, making it easy to onboard shoppers and keep your CRM current without lifting a finger.

Supported Tools & Triggers

Tools
Add product to custom collectionAdds a product to an existing *custom collection*, optionally specifying its `position` if the collection is manually sorted.
Count product imagesRetrieves the total count of images for a shopify product, useful for inventory management or display logic; the provided `product id` must exist in the store.
Create a custom collectionCreates a new custom collection in a shopify store, requiring a unique title for manually curated product groupings (e.
Create CustomerTool to create a new customer in shopify.
Create an orderCreates a new order in shopify, typically requiring line items; if `customer id` is provided, it must correspond to an existing customer.
Create a productCreates a new product in a shopify store; a product title is generally required.
Create Product ImageTool to create a new product image for a given product.
Delete custom collectionPermanently deletes a custom collection from a shopify store using its `collection id`; this action is irreversible and requires a valid, existing `collection id`.
Delete a productDeletes a specific, existing product from a shopify store using its unique product id; this action is irreversible.
Delete product imageDeletes a specific image from a product in shopify, requiring the `product id` of an existing product and the `image id` of an image currently associated with that product.
Get All CustomersRetrieves customer records from a shopify store, with options for filtering, selecting specific fields, and paginating through the results.
Get collection by IDRetrieves a specific shopify collection by its `collection id`, optionally filtering returned data to specified `fields`.
Get collectsRetrieves a list of collects from a shopify store, where a collect links a product to a custom collection.
Get collects countRetrieves the total count of collects (product-to-collection associations) in a shopify store.
Get custom collectionsRetrieves a list of custom collections from a shopify store, optionally filtered by ids, product id, or handle.
Get custom collections countRetrieves the total number of custom collections in a shopify store.
Get CustomerRetrieves detailed information for a specific customer from a shopify store, provided their valid and existing `customer id`.
Get customer ordersRetrieves all orders for a specific, existing customer in shopify using their unique customer id.
Get order listRetrieves a list of orders from shopify using default api settings and filters.
Get order by idRetrieves a specific shopify order by its unique id, which must correspond to an existing order.
Get productRetrieves details for an existing shopify product using its unique product id.
Get product imageRetrieves detailed information for a specific product image, identified by its id and its associated product id, from a shopify store.
Get Product ImagesRetrieves all images for a shopify product, specified by its `product id` which must correspond to an existing product.
Get productsRetrieves a list of products from a shopify store.
Get products countRetrieves the total, unfiltered count of all products in a shopify store.
Get products in collectionRetrieves all products within a specified shopify collection, requiring a valid `collection id`.
Get Shop DetailsRetrieves comprehensive administrative information about the authenticated shopify store, as defined by the shopify api.
Update OrderUpdates the phone number for an existing shopify order, identified by its id; pass `phone=none` to remove the current phone number.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Python 3.9 or higher
  • A Composio account with an active API key
  • Basic familiarity with Python and async programming

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

bash
pip install composio pydantic-ai python-dotenv

Install the required libraries.

What's happening:

  • composio connects your agent to external SaaS tools like Shopify
  • pydantic-ai lets you create structured AI agents with tool support
  • python-dotenv loads your environment variables securely from a .env file

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
USER_ID=your_user_id_here
OPENAI_API_KEY=your_openai_api_key

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates your agent to Composio's API
  • USER_ID associates your session with your account for secure tool access
  • OPENAI_API_KEY to access OpenAI LLMs

Import dependencies

python
import asyncio
import os
from dotenv import load_dotenv
from composio import Composio
from pydantic_ai import Agent
from pydantic_ai.mcp import MCPServerStreamableHTTP

load_dotenv()
What's happening:
  • We load environment variables and import required modules
  • Composio manages connections to Shopify
  • MCPServerStreamableHTTP connects to the Shopify MCP server endpoint
  • Agent from Pydantic AI lets you define and run the AI assistant

Create a Tool Router Session

python
async def main():
    api_key = os.getenv("COMPOSIO_API_KEY")
    user_id = os.getenv("USER_ID")
    if not api_key or not user_id:
        raise RuntimeError("Set COMPOSIO_API_KEY and USER_ID in your environment")

    # Create a Composio Tool Router session for Shopify
    composio = Composio(api_key=api_key)
    session = composio.create(
        user_id=user_id,
        toolkits=["shopify"],
    )
    url = session.mcp.url
    if not url:
        raise ValueError("Composio session did not return an MCP URL")
What's happening:
  • We're creating a Tool Router session that gives your agent access to Shopify tools
  • The create method takes the user ID and specifies which toolkits should be available
  • The returned session.mcp.url is the MCP server URL that your agent will use

Initialize the Pydantic AI Agent

python
# Attach the MCP server to a Pydantic AI Agent
shopify_mcp = MCPServerStreamableHTTP(url, headers={"x-api-key": COMPOSIO_API_KEY})
agent = Agent(
    "openai:gpt-5",
    toolsets=[shopify_mcp],
    instructions=(
        "You are a Shopify assistant. Use Shopify tools to help users "
        "with their requests. Ask clarifying questions when needed."
    ),
)
What's happening:
  • The MCP client connects to the Shopify endpoint
  • The agent uses GPT-5 to interpret user commands and perform Shopify operations
  • The instructions field defines the agent's role and behavior

Build the chat interface

python
# Simple REPL with message history
history = []
print("Chat started! Type 'exit' or 'quit' to end.\n")
print("Try asking the agent to help you with Shopify.\n")

while True:
    user_input = input("You: ").strip()
    if user_input.lower() in {"exit", "quit", "bye"}:
        print("\nGoodbye!")
        break
    if not user_input:
        continue

    print("\nAgent is thinking...\n", flush=True)

    async with agent.run_stream(user_input, message_history=history) as stream_result:
        collected_text = ""
        async for chunk in stream_result.stream_output():
            text_piece = None
            if isinstance(chunk, str):
                text_piece = chunk
            elif hasattr(chunk, "delta") and isinstance(chunk.delta, str):
                text_piece = chunk.delta
            elif hasattr(chunk, "text"):
                text_piece = chunk.text
            if text_piece:
                collected_text += text_piece
        result = stream_result

    print(f"Agent: {collected_text}\n")
    history = result.all_messages()
What's happening:
  • The agent reads input from the terminal and streams its response
  • Shopify API calls happen automatically under the hood
  • The model keeps conversation history to maintain context across turns

Run the application

python
if __name__ == "__main__":
    asyncio.run(main())
What's happening:
  • The asyncio loop launches the agent and keeps it running until you exit

Complete Code

Here's the complete code to get you started with Shopify and Pydantic AI:

python
import asyncio
import os
from dotenv import load_dotenv
from composio import Composio
from pydantic_ai import Agent
from pydantic_ai.mcp import MCPServerStreamableHTTP

load_dotenv()

async def main():
    api_key = os.getenv("COMPOSIO_API_KEY")
    user_id = os.getenv("USER_ID")
    if not api_key or not user_id:
        raise RuntimeError("Set COMPOSIO_API_KEY and USER_ID in your environment")

    # Create a Composio Tool Router session for Shopify
    composio = Composio(api_key=api_key)
    session = composio.create(
        user_id=user_id,
        toolkits=["shopify"],
    )
    url = session.mcp.url
    if not url:
        raise ValueError("Composio session did not return an MCP URL")

    # Attach the MCP server to a Pydantic AI Agent
    shopify_mcp = MCPServerStreamableHTTP(url, headers={"x-api-key": COMPOSIO_API_KEY})
    agent = Agent(
        "openai:gpt-5",
        toolsets=[shopify_mcp],
        instructions=(
            "You are a Shopify assistant. Use Shopify tools to help users "
            "with their requests. Ask clarifying questions when needed."
        ),
    )

    # Simple REPL with message history
    history = []
    print("Chat started! Type 'exit' or 'quit' to end.\n")
    print("Try asking the agent to help you with Shopify.\n")

    while True:
        user_input = input("You: ").strip()
        if user_input.lower() in {"exit", "quit", "bye"}:
            print("\nGoodbye!")
            break
        if not user_input:
            continue

        print("\nAgent is thinking...\n", flush=True)

        async with agent.run_stream(user_input, message_history=history) as stream_result:
            collected_text = ""
            async for chunk in stream_result.stream_output():
                text_piece = None
                if isinstance(chunk, str):
                    text_piece = chunk
                elif hasattr(chunk, "delta") and isinstance(chunk.delta, str):
                    text_piece = chunk.delta
                elif hasattr(chunk, "text"):
                    text_piece = chunk.text
                if text_piece:
                    collected_text += text_piece
            result = stream_result

        print(f"Agent: {collected_text}\n")
        history = result.all_messages()

if __name__ == "__main__":
    asyncio.run(main())

Conclusion

You've built a Pydantic AI agent that can interact with Shopify through Composio's Tool Router. With this setup, your agent can perform real Shopify actions through natural language. You can extend this further by:
  • Adding other toolkits like Gmail, HubSpot, or Salesforce
  • Building a web-based chat interface around this agent
  • Using multiple MCP endpoints to enable cross-app workflows (for example, Gmail + Shopify for workflow automation)
This architecture makes your AI agent "agent-native", able to securely use APIs in a unified, composable way without custom integrations.

How to build Shopify MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Shopify MCP?

With a standalone Shopify MCP server, the agents and LLMs can only access a fixed set of Shopify tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Shopify and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with Pydantic AI?

Yes, you can. Pydantic AI fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Shopify tools.

Can I manage the permissions and scopes for Shopify while using Tool Router?

Yes, absolutely. You can configure which Shopify scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Shopify data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.