How to integrate Servicem8 MCP with Autogen

Framework Integration Gradient
Servicem8 Logo
AutoGen Logo
divider

Introduction

This guide walks you through connecting Servicem8 to AutoGen using the Composio tool router. By the end, you'll have a working Servicem8 agent that can create a new job for a plumbing callout, list all clients with overdue invoices, add a payment note to job 12345, show all available job document templates through natural language commands.

This guide will help you understand how to give your AutoGen agent real control over a Servicem8 account through Composio's Servicem8 MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get and set up your OpenAI and Composio API keys
  • Install the required dependencies for Autogen and Composio
  • Initialize Composio and create a Tool Router session for Servicem8
  • Wire that MCP URL into Autogen using McpWorkbench and StreamableHttpServerParams
  • Configure an Autogen AssistantAgent that can call Servicem8 tools
  • Run a live chat loop where you ask the agent to perform Servicem8 operations

What is AutoGen?

Autogen is a framework for building multi-agent conversational AI systems from Microsoft. It enables you to create agents that can collaborate, use tools, and maintain complex workflows.

Key features include:

  • Multi-Agent Systems: Build collaborative agent workflows
  • MCP Workbench: Native support for Model Context Protocol tools
  • Streaming HTTP: Connect to external services through streamable HTTP
  • AssistantAgent: Pre-built agent class for tool-using assistants

What is the Servicem8 MCP server, and what's possible with it?

The Servicem8 MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Servicem8 account. It provides structured and secure access to your job management system, so your agent can perform actions like creating jobs, managing notes and payments, listing clients, and retrieving templates on your behalf.

  • Job creation and management: Instruct your agent to create new jobs, add detailed job information, or update records, streamlining field service operations.
  • Automated note handling: Have your agent attach important notes to jobs or remove outdated notes to keep job records clean and up-to-date.
  • Payment processing and tracking: Let your agent record new job payments or archive payment records, ensuring accurate and timely invoicing.
  • Comprehensive client and asset retrieval: Ask your agent to pull complete lists of clients and assets for reporting, integrations, or inventory management.
  • Template and form discovery: Fetch available document templates and forms so your agent can prepare job paperwork or gather required information efficiently.

Supported Tools & Triggers

Tools
ServiceM8 Create Job NoteTool to create a new job note in servicem8.
ServiceM8 Create Job PaymentTool to create a new job payment in servicem8.
Create a new JobTool to create a new job in servicem8.
Delete Job NoteTool to delete a specific job note.
ServiceM8 Delete Job PaymentTool to delete (archive) a specific job payment by its uuid.
List All AssetsTool to list all servicem8 assets.
List All ClientsTool to list all servicem8 clients.
List All Document TemplatesTool to list document templates.
List All FormsTool to list all servicem8 forms.
List All Job NotesTool to list all job notes in servicem8.
List All Job QueuesTool to list all job queues in servicem8.
List All JobsTool to list all jobs.
List All LocationsTool to list all servicem8 locations.
List All MaterialsTool to list all materials.
List All TasksTool to list all tasks in a servicem8 account.
Retrieve ServiceM8 ClientTool to retrieve details of a specific client by its uuid.
Retrieve FormTool to retrieve details of a specific form by its uuid.
Retrieve JobTool to retrieve details of a specific job by its uuid.
Retrieve Job ActivityTool to retrieve details of a specific job activity by its uuid.
Retrieve Job NoteTool to retrieve details of a specific job note by its uuid.
Retrieve Job PaymentTool to retrieve details of a specific job payment by its uuid.
Retrieve Job QueueTool to retrieve details of a specific job queue by its uuid.
Retrieve LocationTool to retrieve details of a specific location by its uuid.
Retrieve ServiceM8 MaterialTool to retrieve details of a specific material by its uuid.
Retrieve Staff MemberTool to retrieve details of a specific staff member by their uuid.
ServiceM8 Create JobTool to create a new job in servicem8.
Update a ServiceM8 Job NoteTool to update details of an existing job note.
ServiceM8 Update Job PaymentTool to update details of an existing job payment.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

You will need:

  • A Composio API key
  • An OpenAI API key (used by Autogen's OpenAIChatCompletionClient)
  • A Servicem8 account you can connect to Composio
  • Some basic familiarity with Autogen and Python async

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

bash
pip install composio python-dotenv
pip install autogen-agentchat autogen-ext-openai autogen-ext-tools

Install Composio, Autogen extensions, and dotenv.

What's happening:

  • composio connects your agent to Servicem8 via MCP
  • autogen-agentchat provides the AssistantAgent class
  • autogen-ext-openai provides the OpenAI model client
  • autogen-ext-tools provides MCP workbench support

Set up environment variables

bash
COMPOSIO_API_KEY=your-composio-api-key
OPENAI_API_KEY=your-openai-api-key
USER_ID=your-user-identifier@example.com

Create a .env file in your project folder.

What's happening:

  • COMPOSIO_API_KEY is required to talk to Composio
  • OPENAI_API_KEY is used by Autogen's OpenAI client
  • USER_ID is how Composio identifies which user's Servicem8 connections to use

Import dependencies and create Tool Router session

python
import asyncio
import os
from dotenv import load_dotenv
from composio import Composio

from autogen_agentchat.agents import AssistantAgent
from autogen_ext.models.openai import OpenAIChatCompletionClient
from autogen_ext.tools.mcp import McpWorkbench, StreamableHttpServerParams

load_dotenv()

async def main():
    # Initialize Composio and create a Servicem8 session
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
    session = composio.create(
        user_id=os.getenv("USER_ID"),
        toolkits=["servicem8"]
    )
    url = session.mcp.url
What's happening:
  • load_dotenv() reads your .env file
  • Composio(api_key=...) initializes the SDK
  • create(...) creates a Tool Router session that exposes Servicem8 tools
  • session.mcp.url is the MCP endpoint that Autogen will connect to

Configure MCP parameters for Autogen

python
# Configure MCP server parameters for Streamable HTTP
server_params = StreamableHttpServerParams(
    url=url,
    timeout=30.0,
    sse_read_timeout=300.0,
    terminate_on_close=True,
    headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")}
)

Autogen expects parameters describing how to talk to the MCP server. That is what StreamableHttpServerParams is for.

What's happening:

  • url points to the Tool Router MCP endpoint from Composio
  • timeout is the HTTP timeout for requests
  • sse_read_timeout controls how long to wait when streaming responses
  • terminate_on_close=True cleans up the MCP server process when the workbench is closed

Create the model client and agent

python
# Create model client
model_client = OpenAIChatCompletionClient(
    model="gpt-5",
    api_key=os.getenv("OPENAI_API_KEY")
)

# Use McpWorkbench as context manager
async with McpWorkbench(server_params) as workbench:
    # Create Servicem8 assistant agent with MCP tools
    agent = AssistantAgent(
        name="servicem8_assistant",
        description="An AI assistant that helps with Servicem8 operations.",
        model_client=model_client,
        workbench=workbench,
        model_client_stream=True,
        max_tool_iterations=10
    )

What's happening:

  • OpenAIChatCompletionClient wraps the OpenAI model for Autogen
  • McpWorkbench connects the agent to the MCP tools
  • AssistantAgent is configured with the Servicem8 tools from the workbench

Run the interactive chat loop

python
print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
print("Ask any Servicem8 related question or task to the agent.\n")

# Conversation loop
while True:
    user_input = input("You: ").strip()

    if user_input.lower() in ["exit", "quit", "bye"]:
        print("\nGoodbye!")
        break

    if not user_input:
        continue

    print("\nAgent is thinking...\n")

    # Run the agent with streaming
    try:
        response_text = ""
        async for message in agent.run_stream(task=user_input):
            if hasattr(message, "content") and message.content:
                response_text = message.content

        # Print the final response
        if response_text:
            print(f"Agent: {response_text}\n")
        else:
            print("Agent: I encountered an issue processing your request.\n")

    except Exception as e:
        print(f"Agent: Sorry, I encountered an error: {str(e)}\n")
What's happening:
  • The script prompts you in a loop with You:
  • Autogen passes your input to the model, which decides which Servicem8 tools to call via MCP
  • agent.run_stream(...) yields streaming messages as the agent thinks and calls tools
  • Typing exit, quit, or bye ends the loop

Complete Code

Here's the complete code to get you started with Servicem8 and AutoGen:

python
import asyncio
import os
from dotenv import load_dotenv
from composio import Composio

from autogen_agentchat.agents import AssistantAgent
from autogen_ext.models.openai import OpenAIChatCompletionClient
from autogen_ext.tools.mcp import McpWorkbench, StreamableHttpServerParams

load_dotenv()

async def main():
    # Initialize Composio and create a Servicem8 session
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
    session = composio.create(
        user_id=os.getenv("USER_ID"),
        toolkits=["servicem8"]
    )
    url = session.mcp.url

    # Configure MCP server parameters for Streamable HTTP
    server_params = StreamableHttpServerParams(
        url=url,
        timeout=30.0,
        sse_read_timeout=300.0,
        terminate_on_close=True,
        headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")}
    )

    # Create model client
    model_client = OpenAIChatCompletionClient(
        model="gpt-5",
        api_key=os.getenv("OPENAI_API_KEY")
    )

    # Use McpWorkbench as context manager
    async with McpWorkbench(server_params) as workbench:
        # Create Servicem8 assistant agent with MCP tools
        agent = AssistantAgent(
            name="servicem8_assistant",
            description="An AI assistant that helps with Servicem8 operations.",
            model_client=model_client,
            workbench=workbench,
            model_client_stream=True,
            max_tool_iterations=10
        )

        print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
        print("Ask any Servicem8 related question or task to the agent.\n")

        # Conversation loop
        while True:
            user_input = input("You: ").strip()

            if user_input.lower() in ['exit', 'quit', 'bye']:
                print("\nGoodbye!")
                break

            if not user_input:
                continue

            print("\nAgent is thinking...\n")

            # Run the agent with streaming
            try:
                response_text = ""
                async for message in agent.run_stream(task=user_input):
                    if hasattr(message, 'content') and message.content:
                        response_text = message.content

                # Print the final response
                if response_text:
                    print(f"Agent: {response_text}\n")
                else:
                    print("Agent: I encountered an issue processing your request.\n")

            except Exception as e:
                print(f"Agent: Sorry, I encountered an error: {str(e)}\n")

if __name__ == "__main__":
    asyncio.run(main())

Conclusion

You now have an Autogen assistant wired into Servicem8 through Composio's Tool Router and MCP. From here you can:
  • Add more toolkits to the toolkits list, for example notion or hubspot
  • Refine the agent description to point it at specific workflows
  • Wrap this script behind a UI, Slack bot, or internal tool
Once the pattern is clear for Servicem8, you can reuse the same structure for other MCP-enabled apps with minimal code changes.

How to build Servicem8 MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Servicem8 MCP?

With a standalone Servicem8 MCP server, the agents and LLMs can only access a fixed set of Servicem8 tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Servicem8 and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with Autogen?

Yes, you can. Autogen fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Servicem8 tools.

Can I manage the permissions and scopes for Servicem8 while using Tool Router?

Yes, absolutely. You can configure which Servicem8 scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Servicem8 data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.