How to integrate Semanticscholar MCP with Pydantic AI

Framework Integration Gradient
Semanticscholar Logo
Pydantic AI Logo
divider

Introduction

This guide walks you through connecting Semanticscholar to Pydantic AI using the Composio tool router. By the end, you'll have a working Semanticscholar agent that can find the latest papers on graph neural networks, list citations for a specific research paper, summarize an author’s recent publications, get references cited by a given paper through natural language commands.

This guide will help you understand how to give your Pydantic AI agent real control over a Semanticscholar account through Composio's Semanticscholar MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • How to set up your Composio API key and User ID
  • How to create a Composio Tool Router session for Semanticscholar
  • How to attach an MCP Server to a Pydantic AI agent
  • How to stream responses and maintain chat history
  • How to build a simple REPL-style chat interface to test your Semanticscholar workflows

What is Pydantic AI?

Pydantic AI is a Python framework for building AI agents with strong typing and validation. It leverages Pydantic's data validation capabilities to create robust, type-safe AI applications.

Key features include:

  • Type Safety: Built on Pydantic for automatic data validation
  • MCP Support: Native support for Model Context Protocol servers
  • Streaming: Built-in support for streaming responses
  • Async First: Designed for async/await patterns

What is the Semanticscholar MCP server, and what's possible with it?

The Semanticscholar MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Semantic Scholar account. It provides structured and secure access to scholarly data, so your agent can search for academic papers, retrieve detailed author profiles, analyze citations, and explore references or publication histories on your behalf.

  • Comprehensive literature search and discovery: Let your agent search for academic papers by topic, author, or relevance and retrieve lists of matching publications with rich metadata.
  • In-depth paper and author insights: Ask your agent to fetch detailed information about specific papers—including titles, abstracts, authors, and publication years—or get complete profiles for researchers and their entire body of work.
  • Citation and reference analysis: Enable your agent to trace the impact of a paper by pulling its citations or explore the foundational research it builds upon by listing its references.
  • Batch retrieval for large-scale research: Efficiently gather details on multiple papers or authors at once, streamlining reviews and bibliometric analyses across large datasets.
  • Bulk and relevance-based queries: Use advanced bulk search and filtering to identify up to thousands of papers at a time, making it easy for your agent to support systematic literature reviews and academic data exploration.

Supported Tools & Triggers

Tools
Details about an authorExamples: https://api.
Details about an author s papersRetrieves a list of papers authored by a specific researcher identified by their unique semantic scholar author id.
Details about a paperExamples: https://api.
Details about a paper s authorsRetrieves the list of authors for a specific paper identified by its unique paper id in the semantic scholar database.
Details about a paper s citationsRetrieves a list of citations for a specific academic paper using its unique semantic scholar paper id.
Details about a paper s referencesRetrieves the list of references cited by a specific paper in the semantic scholar database.
Get details for multiple authors at onceRetrieves detailed information for multiple authors from semantic scholar in a single api call.
Get details for multiple papers at onceThe semanticscholar paper batch endpoint allows users to retrieve data for multiple academic papers in a single api call.
Paper bulk searchBehaves similarly to /paper/search, but is intended for bulk retrieval of basic paper data without search relevance: text query is optional and supports boolean logic for document matching.
Paper relevance searchThe searchpapers endpoint allows users to search for academic papers within the semantic scholar database.
Paper title searchBehaves similarly to /paper/search, but is intended for retrieval of a single paper based on closest title match to given query.
Search for authors by nameThe authorsearch endpoint allows users to search for authors within the semantic scholar database.
Suggest paper query completionsTo support interactive query-completion, return minimal information about papers matching a partial query example: https://api.
Text snippet searchReturn the text snippets that most closely match the query.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Python 3.9 or higher
  • A Composio account with an active API key
  • Basic familiarity with Python and async programming

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

bash
pip install composio pydantic-ai python-dotenv

Install the required libraries.

What's happening:

  • composio connects your agent to external SaaS tools like Semanticscholar
  • pydantic-ai lets you create structured AI agents with tool support
  • python-dotenv loads your environment variables securely from a .env file

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
USER_ID=your_user_id_here
OPENAI_API_KEY=your_openai_api_key

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates your agent to Composio's API
  • USER_ID associates your session with your account for secure tool access
  • OPENAI_API_KEY to access OpenAI LLMs

Import dependencies

python
import asyncio
import os
from dotenv import load_dotenv
from composio import Composio
from pydantic_ai import Agent
from pydantic_ai.mcp import MCPServerStreamableHTTP

load_dotenv()
What's happening:
  • We load environment variables and import required modules
  • Composio manages connections to Semanticscholar
  • MCPServerStreamableHTTP connects to the Semanticscholar MCP server endpoint
  • Agent from Pydantic AI lets you define and run the AI assistant

Create a Tool Router Session

python
async def main():
    api_key = os.getenv("COMPOSIO_API_KEY")
    user_id = os.getenv("USER_ID")
    if not api_key or not user_id:
        raise RuntimeError("Set COMPOSIO_API_KEY and USER_ID in your environment")

    # Create a Composio Tool Router session for Semanticscholar
    composio = Composio(api_key=api_key)
    session = composio.create(
        user_id=user_id,
        toolkits=["semanticscholar"],
    )
    url = session.mcp.url
    if not url:
        raise ValueError("Composio session did not return an MCP URL")
What's happening:
  • We're creating a Tool Router session that gives your agent access to Semanticscholar tools
  • The create method takes the user ID and specifies which toolkits should be available
  • The returned session.mcp.url is the MCP server URL that your agent will use

Initialize the Pydantic AI Agent

python
# Attach the MCP server to a Pydantic AI Agent
semanticscholar_mcp = MCPServerStreamableHTTP(url, headers={"x-api-key": COMPOSIO_API_KEY})
agent = Agent(
    "openai:gpt-5",
    toolsets=[semanticscholar_mcp],
    instructions=(
        "You are a Semanticscholar assistant. Use Semanticscholar tools to help users "
        "with their requests. Ask clarifying questions when needed."
    ),
)
What's happening:
  • The MCP client connects to the Semanticscholar endpoint
  • The agent uses GPT-5 to interpret user commands and perform Semanticscholar operations
  • The instructions field defines the agent's role and behavior

Build the chat interface

python
# Simple REPL with message history
history = []
print("Chat started! Type 'exit' or 'quit' to end.\n")
print("Try asking the agent to help you with Semanticscholar.\n")

while True:
    user_input = input("You: ").strip()
    if user_input.lower() in {"exit", "quit", "bye"}:
        print("\nGoodbye!")
        break
    if not user_input:
        continue

    print("\nAgent is thinking...\n", flush=True)

    async with agent.run_stream(user_input, message_history=history) as stream_result:
        collected_text = ""
        async for chunk in stream_result.stream_output():
            text_piece = None
            if isinstance(chunk, str):
                text_piece = chunk
            elif hasattr(chunk, "delta") and isinstance(chunk.delta, str):
                text_piece = chunk.delta
            elif hasattr(chunk, "text"):
                text_piece = chunk.text
            if text_piece:
                collected_text += text_piece
        result = stream_result

    print(f"Agent: {collected_text}\n")
    history = result.all_messages()
What's happening:
  • The agent reads input from the terminal and streams its response
  • Semanticscholar API calls happen automatically under the hood
  • The model keeps conversation history to maintain context across turns

Run the application

python
if __name__ == "__main__":
    asyncio.run(main())
What's happening:
  • The asyncio loop launches the agent and keeps it running until you exit

Complete Code

Here's the complete code to get you started with Semanticscholar and Pydantic AI:

python
import asyncio
import os
from dotenv import load_dotenv
from composio import Composio
from pydantic_ai import Agent
from pydantic_ai.mcp import MCPServerStreamableHTTP

load_dotenv()

async def main():
    api_key = os.getenv("COMPOSIO_API_KEY")
    user_id = os.getenv("USER_ID")
    if not api_key or not user_id:
        raise RuntimeError("Set COMPOSIO_API_KEY and USER_ID in your environment")

    # Create a Composio Tool Router session for Semanticscholar
    composio = Composio(api_key=api_key)
    session = composio.create(
        user_id=user_id,
        toolkits=["semanticscholar"],
    )
    url = session.mcp.url
    if not url:
        raise ValueError("Composio session did not return an MCP URL")

    # Attach the MCP server to a Pydantic AI Agent
    semanticscholar_mcp = MCPServerStreamableHTTP(url, headers={"x-api-key": COMPOSIO_API_KEY})
    agent = Agent(
        "openai:gpt-5",
        toolsets=[semanticscholar_mcp],
        instructions=(
            "You are a Semanticscholar assistant. Use Semanticscholar tools to help users "
            "with their requests. Ask clarifying questions when needed."
        ),
    )

    # Simple REPL with message history
    history = []
    print("Chat started! Type 'exit' or 'quit' to end.\n")
    print("Try asking the agent to help you with Semanticscholar.\n")

    while True:
        user_input = input("You: ").strip()
        if user_input.lower() in {"exit", "quit", "bye"}:
            print("\nGoodbye!")
            break
        if not user_input:
            continue

        print("\nAgent is thinking...\n", flush=True)

        async with agent.run_stream(user_input, message_history=history) as stream_result:
            collected_text = ""
            async for chunk in stream_result.stream_output():
                text_piece = None
                if isinstance(chunk, str):
                    text_piece = chunk
                elif hasattr(chunk, "delta") and isinstance(chunk.delta, str):
                    text_piece = chunk.delta
                elif hasattr(chunk, "text"):
                    text_piece = chunk.text
                if text_piece:
                    collected_text += text_piece
            result = stream_result

        print(f"Agent: {collected_text}\n")
        history = result.all_messages()

if __name__ == "__main__":
    asyncio.run(main())

Conclusion

You've built a Pydantic AI agent that can interact with Semanticscholar through Composio's Tool Router. With this setup, your agent can perform real Semanticscholar actions through natural language. You can extend this further by:
  • Adding other toolkits like Gmail, HubSpot, or Salesforce
  • Building a web-based chat interface around this agent
  • Using multiple MCP endpoints to enable cross-app workflows (for example, Gmail + Semanticscholar for workflow automation)
This architecture makes your AI agent "agent-native", able to securely use APIs in a unified, composable way without custom integrations.

How to build Semanticscholar MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Semanticscholar MCP?

With a standalone Semanticscholar MCP server, the agents and LLMs can only access a fixed set of Semanticscholar tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Semanticscholar and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with Pydantic AI?

Yes, you can. Pydantic AI fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Semanticscholar tools.

Can I manage the permissions and scopes for Semanticscholar while using Tool Router?

Yes, absolutely. You can configure which Semanticscholar scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Semanticscholar data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.