How to integrate Securitytrails MCP with CrewAI

Framework Integration Gradient
Securitytrails Logo
CrewAI Logo
divider

Introduction

This guide walks you through connecting Securitytrails to CrewAI using the Composio tool router. By the end, you'll have a working Securitytrails agent that can show all ips linked to acme.com, fetch ssl certificate history for example.com, run sql query for hosts in 192.168.0.0/16, get current dns records for mydomain.org through natural language commands.

This guide will help you understand how to give your CrewAI agent real control over a Securitytrails account through Composio's Securitytrails MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get a Composio API key and configure your Securitytrails connection
  • Set up CrewAI with an MCP enabled agent
  • Create a Tool Router session or standalone MCP server for Securitytrails
  • Build a conversational loop where your agent can execute Securitytrails operations

What is CrewAI?

CrewAI is a powerful framework for building multi-agent AI systems. It provides primitives for defining agents with specific roles, creating tasks, and orchestrating workflows through crews.

Key features include:

  • Agent Roles: Define specialized agents with specific goals and backstories
  • Task Management: Create tasks with clear descriptions and expected outputs
  • Crew Orchestration: Combine agents and tasks into collaborative workflows
  • MCP Integration: Connect to external tools through Model Context Protocol

What is the Securitytrails MCP server, and what's possible with it?

The Securitytrails MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Securitytrails account. It provides structured and secure access to domain and IP intelligence data, so your agent can perform actions like retrieving domain details, analyzing IP associations, running custom SQL queries, and managing static asset rules on your behalf.

  • Domain and DNS intelligence: Instantly fetch detailed information about any domain, including current DNS record statistics and associated data for robust cybersecurity analysis.
  • SSL certificate retrieval: Access current and historical SSL certificate details for any hostname, helping you track certificate changes or potential vulnerabilities over time.
  • IP and company association search: Discover all IP addresses linked to a specific company domain, or run advanced IP searches using custom DSL queries for threat hunting and investigation.
  • Automated SQL-powered investigations: Execute SQL queries across hosts and IPs to extract targeted intelligence and spot trends or anomalies in your attack surface data.
  • Bulk static asset management: Add, update, or remove up to 1000 static asset rules at once to quickly adapt your security policies across projects.

Supported Tools & Triggers

Tools
Bulk Static Asset RulesTool to bulk add or remove static asset rules for a project.
Get Company Associated IPsTool to retrieve IPs associated with a company domain.
Get DomainTool to retrieve current data about a given domain, including DNS record statistics.
Get Domain SSLTool to fetch current and historical SSL certificate details for a hostname.
IP Search StatisticsTool to fetch summary statistics for an IP DSL query.
List ASI ProjectsTool to list ASI projects available to the account.
PingTool to test authentication and connectivity with the SecurityTrails API.
Scroll ResultsTool to continue scrolling through DSL search results.
Search IPsTool to search IP addresses via SecurityTrails DSL.
SQL API Execute QueryTool to execute SQL queries across Hosts and IPs.
SQL API Scroll ResultsTool to fetch next page of SQL query results.
Temp Scrape Securitytrails UsageTemporary action for scraping Securitytrails usage from documentation.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Python 3.9 or higher
  • A Composio account and API key
  • A Securitytrails connection authorized in Composio
  • An OpenAI API key for the CrewAI LLM
  • Basic familiarity with Python

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

bash
pip install composio crewai crewai-tools python-dotenv
What's happening:
  • composio connects your agent to Securitytrails via MCP
  • crewai provides Agent, Task, Crew, and LLM primitives
  • crewai-tools includes MCP helpers
  • python-dotenv loads environment variables from .env

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
USER_ID=your_user_id_here
OPENAI_API_KEY=your_openai_api_key_here

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates with Composio
  • USER_ID scopes the session to your account
  • OPENAI_API_KEY lets CrewAI use your chosen OpenAI model

Import dependencies

python
from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter  # optional import if you plan to adapt tools
from composio import Composio
from dotenv import load_dotenv
import os
from crewai.mcp import MCPServerHTTP

load_dotenv()
What's happening:
  • CrewAI classes define agents and tasks, and run the workflow
  • MCPServerHTTP connects the agent to an MCP endpoint
  • Composio will give you a short lived Securitytrails MCP URL

Create a Composio Tool Router session for Securitytrails

python
composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
session = composio.create(
    user_id=os.getenv("USER_ID"),
    toolkits=["securitytrails"],
)
url = session.mcp.url
What's happening:
  • You create a Securitytrails only session through Composio
  • Composio returns an MCP HTTP URL that exposes Securitytrails tools

Configure the LLM

python
llm = LLM(
    model="gpt-5-mini",
    api_key=os.getenv("OPENAI_API_KEY"),
)
What's happening:
  • CrewAI will call this LLM for planning and responses
  • You can swap in a different model if needed

Attach the MCP server and create the agent

python
toolkit_agent = Agent(
    role="Securitytrails Assistant",
    goal="Help users interact with Securitytrails through natural language commands",
    backstory=(
        "You are an expert assistant with access to Securitytrails tools. "
        "You can perform various Securitytrails operations on behalf of the user."
    ),
    mcps=[
        MCPServerHTTP(
            url=url,
            streamable=True,
            cache_tools_list=True,
            headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")},
        ),
    ],
    llm=llm,
    verbose=True,
    max_iter=10,
)
What's happening:
  • MCPServerHTTP connects the agent to the Securitytrails MCP endpoint
  • cache_tools_list saves a tools catalog for faster subsequent runs
  • verbose helps you see what the agent is doing

Add a REPL loop with Task and Crew

python
print("Chat started! Type 'exit' or 'quit' to end.\n")
print("Try asking the agent to perform Securitytrails operations.\n")

conversation_context = ""

while True:
    user_input = input("You: ").strip()

    if user_input.lower() in ["exit", "quit", "bye"]:
        print("\nGoodbye!")
        break

    if not user_input:
        continue

    conversation_context += f"\nUser: {user_input}\n"
    print("\nAgent is thinking...\n")

    task = Task(
        description=(
            f"Based on the conversation history:\n{conversation_context}\n\n"
            f"Current user request: {user_input}\n\n"
            f"Please help the user with their Securitytrails related request."
        ),
        expected_output="A helpful response addressing the user's request",
        agent=toolkit_agent,
    )

    crew = Crew(
        agents=[toolkit_agent],
        tasks=[task],
        verbose=False,
    )

    result = crew.kickoff()
    response = str(result)

    conversation_context += f"Agent: {response}\n"
    print(f"Agent: {response}\n")
What's happening:
  • You build a simple chat loop and keep a running context
  • Each user turn becomes a Task handled by the same agent
  • Crew executes the task and returns a response

Run the application

python
if __name__ == "__main__":
    main()
What's happening:
  • Standard Python entry point so you can run python crewai_securitytrails_agent.py

Complete Code

Here's the complete code to get you started with Securitytrails and CrewAI:

python
# file: crewai_securitytrails_agent.py
from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter  # optional
from composio import Composio
from dotenv import load_dotenv
import os
from crewai.mcp import MCPServerHTTP

load_dotenv()

def main():
    # Initialize Composio and create a Securitytrails session
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
    session = composio.create(
        user_id=os.getenv("USER_ID"),
        toolkits=["securitytrails"],
    )
    url = session.mcp.url

    # Configure LLM
    llm = LLM(
        model="gpt-5-mini",
        api_key=os.getenv("OPENAI_API_KEY"),
    )

    # Create Securitytrails assistant agent
    toolkit_agent = Agent(
        role="Securitytrails Assistant",
        goal="Help users interact with Securitytrails through natural language commands",
        backstory=(
            "You are an expert assistant with access to Securitytrails tools. "
            "You can perform various Securitytrails operations on behalf of the user."
        ),
        mcps=[
            MCPServerHTTP(
                url=url,
                streamable=True,
                cache_tools_list=True,
                headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")},
            ),
        ],
        llm=llm,
        verbose=True,
        max_iter=10,
    )

    print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
    print("Try asking the agent to perform Securitytrails operations.\n")

    conversation_context = ""

    while True:
        user_input = input("You: ").strip()

        if user_input.lower() in ["exit", "quit", "bye"]:
            print("\nGoodbye!")
            break

        if not user_input:
            continue

        conversation_context += f"\nUser: {user_input}\n"
        print("\nAgent is thinking...\n")

        task = Task(
            description=(
                f"Based on the conversation history:\n{conversation_context}\n\n"
                f"Current user request: {user_input}\n\n"
                f"Please help the user with their Securitytrails related request."
            ),
            expected_output="A helpful response addressing the user's request",
            agent=toolkit_agent,
        )

        crew = Crew(
            agents=[toolkit_agent],
            tasks=[task],
            verbose=False,
        )

        result = crew.kickoff()
        response = str(result)

        conversation_context += f"Agent: {response}\n"
        print(f"Agent: {response}\n")

if __name__ == "__main__":
    main()

Conclusion

You now have a CrewAI agent connected to Securitytrails through Composio's Tool Router. The agent can perform Securitytrails operations through natural language commands. Next steps:
  • Add role-specific instructions to customize agent behavior
  • Plug in more toolkits for multi-app workflows
  • Chain tasks for complex multi-step operations

How to build Securitytrails MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Securitytrails MCP?

With a standalone Securitytrails MCP server, the agents and LLMs can only access a fixed set of Securitytrails tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Securitytrails and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with CrewAI?

Yes, you can. CrewAI fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Securitytrails tools.

Can I manage the permissions and scopes for Securitytrails while using Tool Router?

Yes, absolutely. You can configure which Securitytrails scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Securitytrails data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.