How to integrate Rocketlane MCP with CrewAI

Framework Integration Gradient
Rocketlane Logo
CrewAI Logo
divider

Introduction

This guide walks you through connecting Rocketlane to CrewAI using the Composio tool router. By the end, you'll have a working Rocketlane agent that can create a new onboarding project for acme corp, log two hours to client implementation task, archive completed projects from last quarter, get detailed info for company with id 12345 through natural language commands.

This guide will help you understand how to give your CrewAI agent real control over a Rocketlane account through Composio's Rocketlane MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get a Composio API key and configure your Rocketlane connection
  • Set up CrewAI with an MCP enabled agent
  • Create a Tool Router session or standalone MCP server for Rocketlane
  • Build a conversational loop where your agent can execute Rocketlane operations

What is CrewAI?

CrewAI is a powerful framework for building multi-agent AI systems. It provides primitives for defining agents with specific roles, creating tasks, and orchestrating workflows through crews.

Key features include:

  • Agent Roles: Define specialized agents with specific goals and backstories
  • Task Management: Create tasks with clear descriptions and expected outputs
  • Crew Orchestration: Combine agents and tasks into collaborative workflows
  • MCP Integration: Connect to external tools through Model Context Protocol

What is the Rocketlane MCP server, and what's possible with it?

The Rocketlane MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Rocketlane account. It provides structured and secure access to your onboarding projects, tasks, and customer data, so your agent can perform actions like creating tasks, managing companies, tracking time entries, and handling project organization on your behalf.

  • Project and company management: Easily direct your agent to create new projects or companies, retrieve detailed company info, and keep your workspace organized.
  • Task creation and deletion: Have your agent add new tasks to any project or swiftly delete outdated tasks using their unique identifiers.
  • Time entry tracking: Log time spent on tasks or projects, review details, or delete time entries for accurate billing and reporting.
  • Custom field insights: Retrieve all available custom fields or fetch specific field details to tailor onboarding workflows to your needs.
  • Project archiving and cleanup: Archive completed projects for future reference or permanently delete projects when they're no longer needed, keeping your workspace tidy.

Supported Tools & Triggers

Tools
Archive Project by IDArchives a specific project based on its unique identifier.
Create CompanyCreates a new company (account) in rocketlane.
Create TaskCreates a new task.
Create Time EntryTool to create a new time entry in rocketlane.
Delete ProjectThis tool allows users to permanently delete a project in rocketlane.
Delete Task By IDDelete a specific task using its unique identifier (taskid).
Delete Time Entry by IDDelete a specific time entry using its unique identifier (timeentryid).
Get All FieldsRetrieve all custom fields available in the system.
Get CompanyThis tool retrieves detailed information about a specific company/account in rocketlane by its id.
Get Field By IDRetrieve detailed information about a specific custom field using its unique identifier (fieldid).
Get Project by IDRetrieves detailed information about a specific project using its unique identifier.
Get Task By IdRetrieve extensive information about a specific task using the task's unique identifier (taskid).
Get Template By IDRetrieve detailed information about a specific template using its unique identifier (templateid).
Get Time EntriesTool to retrieve all time entries from rocketlane.
Get Time Entry By IDRetrieve detailed information about a specific time entry using its unique identifier (timeentryid).
Get User By IDRetrieve detailed information about a specific user using their unique identifier (userid).
List CompaniesThis tool retrieves a list of all companies/accounts in rocketlane.
List Company FieldsThis tool retrieves a list of all available company/account fields in rocketlane.
List Company Note FieldsThis tool retrieves a list of all available note fields for companies in rocketlane.
List CurrenciesReturns a predefined list of commonly used currencies since rocketlane api doesn't provide a dedicated currencies endpoint.
List Customer UsersList customer users.
List Project FieldsThis tool retrieves a list of all project fields in rocketlane, including both default and custom fields.
List Project PhasesThis tool retrieves a list of project phases from rocketlane.
List ProjectsThis tool retrieves a list of all projects in the rocketlane instance.
List Task FieldsThis tool retrieves a list of all task fields in rocketlane.
List TemplatesThis tool retrieves a list of all available templates in rocketlane.
List UsersThis tool retrieves all users in the rocketlane instance.
List Vendor UsersList vendor users by filtering users with type 'partner'.
Retrieve Subscription DetailsRetrieves detailed information about the current subscription.
Search User By EmailSearch user by email id.
Update CompanyThis tool updates an existing company/account in rocketlane.
Update Project By IdUpdates an existing project's details using its unique identifier.
Update Time Entry by IDUpdate existing time entry details using its unique identifier (timeentryid).

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Python 3.9 or higher
  • A Composio account and API key
  • A Rocketlane connection authorized in Composio
  • An OpenAI API key for the CrewAI LLM
  • Basic familiarity with Python

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

bash
pip install composio crewai crewai-tools[mcp] python-dotenv
What's happening:
  • composio connects your agent to Rocketlane via MCP
  • crewai provides Agent, Task, Crew, and LLM primitives
  • crewai-tools[mcp] includes MCP helpers
  • python-dotenv loads environment variables from .env

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
USER_ID=your_user_id_here
OPENAI_API_KEY=your_openai_api_key_here

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates with Composio
  • USER_ID scopes the session to your account
  • OPENAI_API_KEY lets CrewAI use your chosen OpenAI model

Import dependencies

python
import os
from composio import Composio
from crewai import Agent, Task, Crew
from crewai_tools import MCPServerAdapter
import dotenv

dotenv.load_dotenv()

COMPOSIO_API_KEY = os.getenv("COMPOSIO_API_KEY")
COMPOSIO_USER_ID = os.getenv("COMPOSIO_USER_ID")

if not COMPOSIO_API_KEY:
    raise ValueError("COMPOSIO_API_KEY is not set")
if not COMPOSIO_USER_ID:
    raise ValueError("COMPOSIO_USER_ID is not set")
What's happening:
  • CrewAI classes define agents and tasks, and run the workflow
  • MCPServerHTTP connects the agent to an MCP endpoint
  • Composio will give you a short lived Rocketlane MCP URL

Create a Composio Tool Router session for Rocketlane

python
composio_client = Composio(api_key=COMPOSIO_API_KEY)
session = composio_client.create(user_id=COMPOSIO_USER_ID, toolkits=["rocketlane"])

url = session.mcp.url
What's happening:
  • You create a Rocketlane only session through Composio
  • Composio returns an MCP HTTP URL that exposes Rocketlane tools

Initialize the MCP Server

python
server_params = {
    "url": url,
    "transport": "streamable-http",
    "headers": {"x-api-key": COMPOSIO_API_KEY},
}

with MCPServerAdapter(server_params) as tools:
    agent = Agent(
        role="Search Assistant",
        goal="Help users search the internet effectively",
        backstory="You are a helpful assistant with access to search tools.",
        tools=tools,
        verbose=False,
        max_iter=10,
    )
What's Happening:
  • Server Configuration: The code sets up connection parameters including the MCP server URL, streamable HTTP transport, and Composio API key authentication.
  • MCP Adapter Bridge: MCPServerAdapter acts as a context manager that converts Composio MCP tools into a CrewAI-compatible format.
  • Agent Setup: Creates a CrewAI Agent with a defined role (Search Assistant), goal (help with internet searches), and access to the MCP tools.
  • Configuration Options: The agent includes settings like verbose=False for clean output and max_iter=10 to prevent infinite loops.
  • Dynamic Tool Usage: Once created, the agent automatically accesses all Composio Search tools and decides when to use them based on user queries.

Create a CLI Chatloop and define the Crew

python
print("Chat started! Type 'exit' or 'quit' to end.\n")

conversation_context = ""

while True:
    user_input = input("You: ").strip()

    if user_input.lower() in ["exit", "quit", "bye"]:
        print("\nGoodbye!")
        break

    if not user_input:
        continue

    conversation_context += f"\nUser: {user_input}\n"
    print("\nAgent is thinking...\n")

    task = Task(
        description=(
            f"Conversation history:\n{conversation_context}\n\n"
            f"Current request: {user_input}"
        ),
        expected_output="A helpful response addressing the user's request",
        agent=agent,
    )

    crew = Crew(agents=[agent], tasks=[task], verbose=False)
    result = crew.kickoff()
    response = str(result)

    conversation_context += f"Agent: {response}\n"
    print(f"Agent: {response}\n")
What's Happening:
  • Interactive CLI Setup: The code creates an infinite loop that continuously prompts for user input and maintains the entire conversation history in a string variable.
  • Input Validation: Empty inputs are ignored to prevent processing blank messages and keep the conversation clean.
  • Context Building: Each user message is appended to the conversation context, which preserves the full dialogue history for better agent responses.
  • Dynamic Task Creation: For every user input, a new Task is created that includes both the full conversation history and the current request as context.
  • Crew Execution: A Crew is instantiated with the agent and task, then kicked off to process the request and generate a response.
  • Response Management: The agent's response is converted to a string, added to the conversation context, and displayed to the user, maintaining conversational continuity.

Complete Code

Here's the complete code to get you started with Rocketlane and CrewAI:

from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter
from composio import Composio
from dotenv import load_dotenv
import os

load_dotenv()

GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
COMPOSIO_API_KEY = os.getenv("COMPOSIO_API_KEY")
COMPOSIO_USER_ID = os.getenv("COMPOSIO_USER_ID")

if not GOOGLE_API_KEY:
    raise ValueError("GOOGLE_API_KEY is not set in the environment.")
if not COMPOSIO_API_KEY:
    raise ValueError("COMPOSIO_API_KEY is not set in the environment.")
if not COMPOSIO_USER_ID:
    raise ValueError("COMPOSIO_USER_ID is not set in the environment.")

# Initialize Composio and create a session
composio = Composio(api_key=COMPOSIO_API_KEY)
session = composio.create(
    user_id=COMPOSIO_USER_ID,
    toolkits=["rocketlane"],
)
url = session.mcp.url

# Configure LLM
llm = LLM(
    model="gpt-5",
    api_key=os.getenv("OPENAI_API_KEY"),
)

server_params = {
    "url": url,
    "transport": "streamable-http",
    "headers": {"x-api-key": COMPOSIO_API_KEY},
}

with MCPServerAdapter(server_params) as tools:
    agent = Agent(
        role="Search Assistant",
        goal="Help users with internet searches",
        backstory="You are an expert assistant with access to Composio Search tools.",
        tools=tools,
        llm=llm,
        verbose=False,
        max_iter=10,
    )

    print("Chat started! Type 'exit' or 'quit' to end.\n")

    conversation_context = ""

    while True:
        user_input = input("You: ").strip()

        if user_input.lower() in ["exit", "quit", "bye"]:
            print("\nGoodbye!")
            break

        if not user_input:
            continue

        conversation_context += f"\nUser: {user_input}\n"
        print("\nAgent is thinking...\n")

        task = Task(
            description=(
                f"Conversation history:\n{conversation_context}\n\n"
                f"Current request: {user_input}"
            ),
            expected_output="A helpful response addressing the user's request",
            agent=agent,
        )

        crew = Crew(agents=[agent], tasks=[task], verbose=False)
        result = crew.kickoff()
        response = str(result)

        conversation_context += f"Agent: {response}\n"
        print(f"Agent: {response}\n")

Conclusion

You now have a CrewAI agent connected to Rocketlane through Composio's Tool Router. The agent can perform Rocketlane operations through natural language commands.

Next steps:

  • Add role-specific instructions to customize agent behavior
  • Plug in more toolkits for multi-app workflows
  • Chain tasks for complex multi-step operations

How to build Rocketlane MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Rocketlane MCP?

With a standalone Rocketlane MCP server, the agents and LLMs can only access a fixed set of Rocketlane tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Rocketlane and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with CrewAI?

Yes, you can. CrewAI fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Rocketlane tools.

Can I manage the permissions and scopes for Rocketlane while using Tool Router?

Yes, absolutely. You can configure which Rocketlane scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Rocketlane data and credentials are handled as safely as possible.

Used by agents from

Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.