How to integrate Retellai MCP with CrewAI

Framework Integration Gradient
Retellai Logo
CrewAI Logo
divider

Introduction

This guide walks you through connecting Retellai to CrewAI using the Composio tool router. By the end, you'll have a working Retellai agent that can list all phone numbers linked to my account, retrieve call details for a specific agent this week, buy a new phone number with area code 415, get transcript and status for call id 12345 through natural language commands.

This guide will help you understand how to give your CrewAI agent real control over a Retellai account through Composio's Retellai MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get a Composio API key and configure your Retellai connection
  • Set up CrewAI with an MCP enabled agent
  • Create a Tool Router session or standalone MCP server for Retellai
  • Build a conversational loop where your agent can execute Retellai operations

What is CrewAI?

CrewAI is a powerful framework for building multi-agent AI systems. It provides primitives for defining agents with specific roles, creating tasks, and orchestrating workflows through crews.

Key features include:

  • Agent Roles: Define specialized agents with specific goals and backstories
  • Task Management: Create tasks with clear descriptions and expected outputs
  • Crew Orchestration: Combine agents and tasks into collaborative workflows
  • MCP Integration: Connect to external tools through Model Context Protocol

What is the Retellai MCP server, and what's possible with it?

The Retellai MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Retellai account. It provides structured and secure access to your call records, phone numbers, and conversation transcripts, so your agent can perform actions like retrieving call details, managing phone numbers, initiating outbound calls, and analyzing voice data on your behalf.

  • Retrieve and analyze call records: Your agent can fetch detailed call logs, filter by agent or time, and surface insights from past conversations.
  • Initiate outbound and web-based calls: Easily direct your agent to start new phone or web calls between specific numbers or agents, supporting various business workflows.
  • Manage phone numbers and assignments: Buy, update, or delete phone numbers, and bind them to agents for streamlined inbound and outbound call handling.
  • Access and review call transcripts and details: Let your agent drill down into specific calls, pulling transcripts and metadata for compliance, training, or analytics.
  • Explore and configure voice settings: Fetch detailed information about available voice options, including provider, accent, gender, and preview audio for customization of call experiences.

Supported Tools & Triggers

Tools
Buy a new phone number bind agentsThis endpoint allows purchasing a new phone number with a specified area code and binding it to designated agents for inbound and outbound calls.
Create a new outbound phone callInitiate an outbound call by post to '/v2/create-phone-call'.
Create a new web callThe /v2/create-web-call endpoint creates a web call with a unique agent id, returning call details like type, token, call id, and status in json format, with a 201 response.
Delete phone numberDeletes an existing phone number identified by its e.
List all phone numbersRetrieves a list of all phone numbers associated with the account.
Retrieve call detailsThe /v2/list-calls endpoint retrieves call records with filters (agent id, timestamps), offers sorting, pagination, and handles different responses (success, bad request, unauthorized, server error) in json format.
Retrieve call details by idRetrieve call details by id for web/phone calls, including type, agent id, status, timestamps, and web access token; covering responses from success to server errors.
Retrieve details of a specific phone numberFetches the details of a given phone number in e.
Retrieve details of a specific voice"access specific voice details including its name, provider, accent, gender, and a preview audio url using the unique voice id.
Update phone numberUpdates the agent bound to a purchased phone number.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Python 3.9 or higher
  • A Composio account and API key
  • A Retellai connection authorized in Composio
  • An OpenAI API key for the CrewAI LLM
  • Basic familiarity with Python

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

bash
pip install composio crewai crewai-tools python-dotenv
What's happening:
  • composio connects your agent to Retellai via MCP
  • crewai provides Agent, Task, Crew, and LLM primitives
  • crewai-tools includes MCP helpers
  • python-dotenv loads environment variables from .env

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
USER_ID=your_user_id_here
OPENAI_API_KEY=your_openai_api_key_here

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates with Composio
  • USER_ID scopes the session to your account
  • OPENAI_API_KEY lets CrewAI use your chosen OpenAI model

Import dependencies

python
from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter  # optional import if you plan to adapt tools
from composio import Composio
from dotenv import load_dotenv
import os
from crewai.mcp import MCPServerHTTP

load_dotenv()
What's happening:
  • CrewAI classes define agents and tasks, and run the workflow
  • MCPServerHTTP connects the agent to an MCP endpoint
  • Composio will give you a short lived Retellai MCP URL

Create a Composio Tool Router session for Retellai

python
composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
session = composio.create(
    user_id=os.getenv("USER_ID"),
    toolkits=["retellai"],
)
url = session.mcp.url
What's happening:
  • You create a Retellai only session through Composio
  • Composio returns an MCP HTTP URL that exposes Retellai tools

Configure the LLM

python
llm = LLM(
    model="gpt-5-mini",
    api_key=os.getenv("OPENAI_API_KEY"),
)
What's happening:
  • CrewAI will call this LLM for planning and responses
  • You can swap in a different model if needed

Attach the MCP server and create the agent

python
toolkit_agent = Agent(
    role="Retellai Assistant",
    goal="Help users interact with Retellai through natural language commands",
    backstory=(
        "You are an expert assistant with access to Retellai tools. "
        "You can perform various Retellai operations on behalf of the user."
    ),
    mcps=[
        MCPServerHTTP(
            url=url,
            streamable=True,
            cache_tools_list=True,
            headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")},
        ),
    ],
    llm=llm,
    verbose=True,
    max_iter=10,
)
What's happening:
  • MCPServerHTTP connects the agent to the Retellai MCP endpoint
  • cache_tools_list saves a tools catalog for faster subsequent runs
  • verbose helps you see what the agent is doing

Add a REPL loop with Task and Crew

python
print("Chat started! Type 'exit' or 'quit' to end.\n")
print("Try asking the agent to perform Retellai operations.\n")

conversation_context = ""

while True:
    user_input = input("You: ").strip()

    if user_input.lower() in ["exit", "quit", "bye"]:
        print("\nGoodbye!")
        break

    if not user_input:
        continue

    conversation_context += f"\nUser: {user_input}\n"
    print("\nAgent is thinking...\n")

    task = Task(
        description=(
            f"Based on the conversation history:\n{conversation_context}\n\n"
            f"Current user request: {user_input}\n\n"
            f"Please help the user with their Retellai related request."
        ),
        expected_output="A helpful response addressing the user's request",
        agent=toolkit_agent,
    )

    crew = Crew(
        agents=[toolkit_agent],
        tasks=[task],
        verbose=False,
    )

    result = crew.kickoff()
    response = str(result)

    conversation_context += f"Agent: {response}\n"
    print(f"Agent: {response}\n")
What's happening:
  • You build a simple chat loop and keep a running context
  • Each user turn becomes a Task handled by the same agent
  • Crew executes the task and returns a response

Run the application

python
if __name__ == "__main__":
    main()
What's happening:
  • Standard Python entry point so you can run python crewai_retellai_agent.py

Complete Code

Here's the complete code to get you started with Retellai and CrewAI:

python
# file: crewai_retellai_agent.py
from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter  # optional
from composio import Composio
from dotenv import load_dotenv
import os
from crewai.mcp import MCPServerHTTP

load_dotenv()

def main():
    # Initialize Composio and create a Retellai session
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
    session = composio.create(
        user_id=os.getenv("USER_ID"),
        toolkits=["retellai"],
    )
    url = session.mcp.url

    # Configure LLM
    llm = LLM(
        model="gpt-5-mini",
        api_key=os.getenv("OPENAI_API_KEY"),
    )

    # Create Retellai assistant agent
    toolkit_agent = Agent(
        role="Retellai Assistant",
        goal="Help users interact with Retellai through natural language commands",
        backstory=(
            "You are an expert assistant with access to Retellai tools. "
            "You can perform various Retellai operations on behalf of the user."
        ),
        mcps=[
            MCPServerHTTP(
                url=url,
                streamable=True,
                cache_tools_list=True,
                headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")},
            ),
        ],
        llm=llm,
        verbose=True,
        max_iter=10,
    )

    print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
    print("Try asking the agent to perform Retellai operations.\n")

    conversation_context = ""

    while True:
        user_input = input("You: ").strip()

        if user_input.lower() in ["exit", "quit", "bye"]:
            print("\nGoodbye!")
            break

        if not user_input:
            continue

        conversation_context += f"\nUser: {user_input}\n"
        print("\nAgent is thinking...\n")

        task = Task(
            description=(
                f"Based on the conversation history:\n{conversation_context}\n\n"
                f"Current user request: {user_input}\n\n"
                f"Please help the user with their Retellai related request."
            ),
            expected_output="A helpful response addressing the user's request",
            agent=toolkit_agent,
        )

        crew = Crew(
            agents=[toolkit_agent],
            tasks=[task],
            verbose=False,
        )

        result = crew.kickoff()
        response = str(result)

        conversation_context += f"Agent: {response}\n"
        print(f"Agent: {response}\n")

if __name__ == "__main__":
    main()

Conclusion

You now have a CrewAI agent connected to Retellai through Composio's Tool Router. The agent can perform Retellai operations through natural language commands. Next steps:
  • Add role-specific instructions to customize agent behavior
  • Plug in more toolkits for multi-app workflows
  • Chain tasks for complex multi-step operations

How to build Retellai MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Retellai MCP?

With a standalone Retellai MCP server, the agents and LLMs can only access a fixed set of Retellai tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Retellai and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with CrewAI?

Yes, you can. CrewAI fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Retellai tools.

Can I manage the permissions and scopes for Retellai while using Tool Router?

Yes, absolutely. You can configure which Retellai scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Retellai data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.