How to integrate Peopledatalabs MCP with Mastra AI

Framework Integration Gradient
Peopledatalabs Logo
Mastra AI Logo
divider

Introduction

This guide walks you through connecting Peopledatalabs to Mastra AI using the Composio tool router. By the end, you'll have a working Peopledatalabs agent that can enrich this email with full person profile, standardize and clean this company name, get detailed info for the skill 'python', find people with 'data scientist' in new york through natural language commands.

This guide will help you understand how to give your Mastra AI agent real control over a Peopledatalabs account through Composio's Peopledatalabs MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Set up your environment so Mastra, OpenAI, and Composio work together
  • Create a Tool Router session in Composio that exposes Peopledatalabs tools
  • Connect Mastra's MCP client to the Composio generated MCP URL
  • Fetch Peopledatalabs tool definitions and attach them as a toolset
  • Build a Mastra agent that can reason, call tools, and return structured results
  • Run an interactive CLI where you can chat with your Peopledatalabs agent

What is Mastra AI?

Mastra AI is a TypeScript framework for building AI agents with tool support. It provides a clean API for creating agents that can use external services through MCP.

Key features include:

  • MCP Client: Built-in support for Model Context Protocol servers
  • Toolsets: Organize tools into logical groups
  • Step Callbacks: Monitor and debug agent execution
  • OpenAI Integration: Works with OpenAI models via @ai-sdk/openai

What is the Peopledatalabs MCP server, and what's possible with it?

The Peopledatalabs MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Peopledatalabs account. It provides structured and secure access to rich B2B data, so your agent can enrich profiles, standardize company details, validate customer information, and perform advanced searches with ease.

  • Comprehensive person data enrichment: Automatically enhance individual profiles using identifiers like email, phone, or full name combined with company or location data.
  • Company data validation and enrichment: Instantly verify and enrich company details with firmographics, employee counts, and standardized fields to power your workflows.
  • Advanced person search and filtering: Leverage Elasticsearch-powered queries to find the exact professional profiles you need using job title, skills, experience, and more.
  • Data cleaning and standardization: Cleanse and structure raw company, school, or location data to maintain high-quality records in your systems.
  • Skill and job title enrichment: Provide context and standardized information for job titles or professional skills to improve analytics and targeting.

Supported Tools & Triggers

Tools
Autocomplete field suggestionsProvides autocompletion suggestions for a specific field (e.
Clean company dataCleans and standardizes company information based on a name, website, or profile url; providing at least one of these inputs is highly recommended for meaningful results.
Clean location dataCleans and standardizes a raw, unformatted location string into a structured representation, provided the input is a recognizable geographical place.
Clean school dataCleans and standardizes school information; provide at least one of the school's name, website, or profile for optimal results.
Person Search with ElasticsearchPerforms a search for person profiles within people data labs using a custom elasticsearch domain specific language (dsl) query.
Enrich Company DataEnriches company data from people data labs with details like firmographics and employee counts, requiring at least one company identifier.
Enrich IP DataEnriches an ip address with company, location, metadata, and person data from people data labs.
Enrich job title dataEnhances a job title by providing additional contextual information and details.
Enrich person dataEnriches person data using various identifiers; requires a primary id (profile, email, phone, email hash, lid, pdl id) or a name (full, or first and last) combined with another demographic detail (e.
Enrich skill dataRetrieves detailed, standardized information for a given skill by querying the people data labs skill enrichment api; for best results, provide a recognized professional skill or area of expertise.
Generate Search QueryConverts natural language queries into structured pdl elasticsearch queries for people or company searches; generates optimized query structure without executing the search.
Get column detailsRetrieves predefined enum values for a column name from `enum mappings.
Get schemaRetrieves the schema, including field names, descriptions, and data types, for 'person' or 'company' entity types.
Identify person dataRetrieves detailed profile information for an individual from people data labs (pdl), requiring at least one identifier such as email, phone, profile url, name, or company.
People Search with ElasticsearchSearches for person profiles in the people data labs (pdl) database using an elasticsearch domain specific language (dsl) query.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Node.js 18 or higher
  • A Composio account with an active API key
  • An OpenAI API key
  • Basic familiarity with TypeScript

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key.
  • You need credits or a connected billing setup to use the models.
  • Store the key somewhere safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Go to Settings and copy your API key.
  • This key lets your Mastra agent talk to Composio and reach Peopledatalabs through MCP.

Install dependencies

bash
npm install @composio/core @mastra/core @mastra/mcp @ai-sdk/openai dotenv

Install the required packages.

What's happening:

  • @composio/core is the Composio SDK for creating MCP sessions
  • @mastra/core provides the Agent class
  • @mastra/mcp is Mastra's MCP client
  • @ai-sdk/openai is the model wrapper for OpenAI
  • dotenv loads environment variables from .env

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
COMPOSIO_USER_ID=your_user_id_here
OPENAI_API_KEY=your_openai_api_key_here

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates your requests to Composio
  • COMPOSIO_USER_ID tells Composio which user this session belongs to
  • OPENAI_API_KEY lets the Mastra agent call OpenAI models

Import libraries and validate environment

typescript
import "dotenv/config";
import { openai } from "@ai-sdk/openai";
import { Agent } from "@mastra/core/agent";
import { MCPClient } from "@mastra/mcp";
import { Composio } from "@composio/core";
import * as readline from "readline";

import type { AiMessageType } from "@mastra/core/agent";

const openaiAPIKey = process.env.OPENAI_API_KEY;
const composioAPIKey = process.env.COMPOSIO_API_KEY;
const composioUserID = process.env.COMPOSIO_USER_ID;

if (!openaiAPIKey) throw new Error("OPENAI_API_KEY is not set");
if (!composioAPIKey) throw new Error("COMPOSIO_API_KEY is not set");
if (!composioUserID) throw new Error("COMPOSIO_USER_ID is not set");

const composio = new Composio({
  apiKey: composioAPIKey as string,
});
What's happening:
  • dotenv/config auto loads your .env so process.env.* is available
  • openai gives you a Mastra compatible model wrapper
  • Agent is the Mastra agent that will call tools and produce answers
  • MCPClient connects Mastra to your Composio MCP server
  • Composio is used to create a Tool Router session

Create a Tool Router session for Peopledatalabs

typescript
async function main() {
  const session = await composio.create(
    composioUserID as string,
    {
      toolkits: ["peopledatalabs"],
    },
  );

  const composioMCPUrl = session.mcp.url;
  console.log("Peopledatalabs MCP URL:", composioMCPUrl);
What's happening:
  • create spins up a short-lived MCP HTTP endpoint for this user
  • The toolkits array contains "peopledatalabs" for Peopledatalabs access
  • session.mcp.url is the MCP URL that Mastra's MCPClient will connect to

Configure Mastra MCP client and fetch tools

typescript
const mcpClient = new MCPClient({
    id: composioUserID as string,
    servers: {
      nasdaq: {
        url: new URL(composioMCPUrl),
        requestInit: {
          headers: session.mcp.headers,
        },
      },
    },
    timeout: 30_000,
  });

console.log("Fetching MCP tools from Composio...");
const composioTools = await mcpClient.getTools();
console.log("Number of tools:", Object.keys(composioTools).length);
What's happening:
  • MCPClient takes an id for this client and a list of MCP servers
  • The headers property includes the x-api-key for authentication
  • getTools fetches the tool definitions exposed by the Peopledatalabs toolkit

Create the Mastra agent

typescript
const agent = new Agent({
    name: "peopledatalabs-mastra-agent",
    instructions: "You are an AI agent with Peopledatalabs tools via Composio.",
    model: "openai/gpt-5",
  });
What's happening:
  • Agent is the core Mastra agent
  • name is just an identifier for logging and debugging
  • instructions guide the agent to use tools instead of only answering in natural language
  • model uses openai("gpt-5") to configure the underlying LLM

Set up interactive chat interface

typescript
let messages: AiMessageType[] = [];

console.log("Chat started! Type 'exit' or 'quit' to end.\n");

const rl = readline.createInterface({
  input: process.stdin,
  output: process.stdout,
  prompt: "> ",
});

rl.prompt();

rl.on("line", async (userInput: string) => {
  const trimmedInput = userInput.trim();

  if (["exit", "quit", "bye"].includes(trimmedInput.toLowerCase())) {
    console.log("\nGoodbye!");
    rl.close();
    process.exit(0);
  }

  if (!trimmedInput) {
    rl.prompt();
    return;
  }

  messages.push({
    id: crypto.randomUUID(),
    role: "user",
    content: trimmedInput,
  });

  console.log("\nAgent is thinking...\n");

  try {
    const response = await agent.generate(messages, {
      toolsets: {
        peopledatalabs: composioTools,
      },
      maxSteps: 8,
    });

    const { text } = response;

    if (text && text.trim().length > 0) {
      console.log(`Agent: ${text}\n`);
        messages.push({
          id: crypto.randomUUID(),
          role: "assistant",
          content: text,
        });
      }
    } catch (error) {
      console.error("\nError:", error);
    }

    rl.prompt();
  });

  rl.on("close", async () => {
    console.log("\nSession ended.");
    await mcpClient.disconnect();
    process.exit(0);
  });
}

main().catch((err) => {
  console.error("Fatal error:", err);
  process.exit(1);
});
What's happening:
  • messages keeps the full conversation history in Mastra's expected format
  • agent.generate runs the agent with conversation history and Peopledatalabs toolsets
  • maxSteps limits how many tool calls the agent can take in a single run
  • onStepFinish is a hook that prints intermediate steps for debugging

Complete Code

Here's the complete code to get you started with Peopledatalabs and Mastra AI:

typescript
import "dotenv/config";
import { openai } from "@ai-sdk/openai";
import { Agent } from "@mastra/core/agent";
import { MCPClient } from "@mastra/mcp";
import { Composio } from "@composio/core";
import * as readline from "readline";

import type { AiMessageType } from "@mastra/core/agent";

const openaiAPIKey = process.env.OPENAI_API_KEY;
const composioAPIKey = process.env.COMPOSIO_API_KEY;
const composioUserID = process.env.COMPOSIO_USER_ID;

if (!openaiAPIKey) throw new Error("OPENAI_API_KEY is not set");
if (!composioAPIKey) throw new Error("COMPOSIO_API_KEY is not set");
if (!composioUserID) throw new Error("COMPOSIO_USER_ID is not set");

const composio = new Composio({ apiKey: composioAPIKey as string });

async function main() {
  const session = await composio.create(composioUserID as string, {
    toolkits: ["peopledatalabs"],
  });

  const composioMCPUrl = session.mcp.url;

  const mcpClient = new MCPClient({
    id: composioUserID as string,
    servers: {
      peopledatalabs: {
        url: new URL(composioMCPUrl),
        requestInit: {
          headers: session.mcp.headers,
        },
      },
    },
    timeout: 30_000,
  });

  const composioTools = await mcpClient.getTools();

  const agent = new Agent({
    name: "peopledatalabs-mastra-agent",
    instructions: "You are an AI agent with Peopledatalabs tools via Composio.",
    model: "openai/gpt-5",
  });

  let messages: AiMessageType[] = [];

  const rl = readline.createInterface({
    input: process.stdin,
    output: process.stdout,
    prompt: "> ",
  });

  rl.prompt();

  rl.on("line", async (input: string) => {
    const trimmed = input.trim();
    if (["exit", "quit"].includes(trimmed.toLowerCase())) {
      rl.close();
      return;
    }

    messages.push({ id: crypto.randomUUID(), role: "user", content: trimmed });

    const { text } = await agent.generate(messages, {
      toolsets: { peopledatalabs: composioTools },
      maxSteps: 8,
    });

    if (text) {
      console.log(`Agent: ${text}\n`);
      messages.push({ id: crypto.randomUUID(), role: "assistant", content: text });
    }

    rl.prompt();
  });

  rl.on("close", async () => {
    await mcpClient.disconnect();
    process.exit(0);
  });
}

main();

Conclusion

You've built a Mastra AI agent that can interact with Peopledatalabs through Composio's Tool Router. You can extend this further by:
  • Adding other toolkits like Gmail, Slack, or GitHub
  • Building a web-based chat interface around this agent
  • Using multiple MCP endpoints to enable cross-app workflows

How to build Peopledatalabs MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Peopledatalabs MCP?

With a standalone Peopledatalabs MCP server, the agents and LLMs can only access a fixed set of Peopledatalabs tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Peopledatalabs and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with Mastra AI?

Yes, you can. Mastra AI fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Peopledatalabs tools.

Can I manage the permissions and scopes for Peopledatalabs while using Tool Router?

Yes, absolutely. You can configure which Peopledatalabs scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Peopledatalabs data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.