How to integrate Nano nets MCP with Google ADK

Framework Integration Gradient
Nano nets Logo
Google ADK Logo
divider

Introduction

This guide walks you through connecting Nano nets to Google ADK using the Composio tool router. By the end, you'll have a working Nano nets agent that can extract table data from recent invoices, upload new receipts for ocr model training, list all documents processed by a workflow, get metadata for a specific ocr model through natural language commands.

This guide will help you understand how to give your Google ADK agent real control over a Nano nets account through Composio's Nano nets MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get a Nano nets account set up and connected to Composio
  • Install the Google ADK and Composio packages
  • Create a Composio Tool Router session for Nano nets
  • Build an agent that connects to Nano nets through MCP
  • Interact with Nano nets using natural language

What is Google ADK?

Google ADK (Agents Development Kit) is Google's framework for building AI agents powered by Gemini models. It provides tools for creating agents that can use external services through the Model Context Protocol.

Key features include:

  • Gemini Integration: Native support for Google's Gemini models
  • MCP Toolset: Built-in support for Model Context Protocol tools
  • Streamable HTTP: Connect to external services through streamable HTTP
  • CLI and Web UI: Run agents via command line or web interface

What is the Nano nets MCP server, and what's possible with it?

The Nano nets MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Nano nets account. It provides structured and secure access to your intelligent document processing tools, so your agent can create, manage, and train OCR models, extract data from documents, and automate document workflows on your behalf.

  • Automated document data extraction: Let your agent process unstructured documents and pull out structured data using Nano nets' powerful AI-driven OCR models.
  • OCR model management: Easily create, update, and delete OCR models, allowing your agent to adjust to changing document types and business needs.
  • Workflow and document handling: Enable your agent to list, track, and manage documents within workflows, so you can monitor processing status and outcomes efficiently.
  • Training image uploads and model improvement: Have your agent upload new training images to OCR models, continually improving accuracy and adapting to new document formats.
  • Comprehensive model insights: Retrieve detailed information about your OCR models and their prediction files, empowering your agent to audit, debug, or optimize model performance as needed.

Supported Tools & Triggers

Tools
Create OCR ModelTool to create a new ocr model.
Delete OCR ModelTool to delete an ocr model.
Get all OCR modelsTool to retrieve a paginated list of all ocr models.
Get All Prediction FilesTool to fetch all prediction files associated with a specific model.
Get OCR Model DetailsTool to retrieve details of an ocr model.
Get OCR Training ImagesTool to retrieve training images for an ocr model.
Get WorkflowsTool to retrieve a list of all workflows in your nanonets account.
List Workflow DocumentsTool to retrieve a paginated list of documents processed by a workflow.
Update OCR ModelTool to update an ocr model's details.
Upload Training Images by FileTool to upload training images by file to a specified ocr model.
Upload Training Images by URLTool to upload training images by url to a specified ocr model.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • A Google API key for Gemini models
  • A Composio account and API key
  • Python 3.9 or later installed
  • Basic familiarity with Python

Getting API Keys for Google and Composio

Google API Key
  • Go to Google AI Studio and create an API key.
  • Copy the key and keep it safe. You will put this in GOOGLE_API_KEY.
Composio API Key and User ID
  • Log in to the Composio dashboard.
  • Go to Settings → API Keys and copy your Composio API key. Use this for COMPOSIO_API_KEY.
  • Decide on a stable user identifier to scope sessions, often your email or a user ID. Use this for COMPOSIO_USER_ID.

Install dependencies

bash
pip install google-adk composio-google python-dotenv

Inside your virtual environment, install the required packages.

What's happening:

  • google-adk is Google's Agents Development Kit
  • composio connects your agent to Nano nets via MCP
  • composio-google provides the Google ADK provider
  • python-dotenv loads environment variables

Set up ADK project

bash
adk create my_agent

Set up a new Google ADK project.

What's happening:

  • This creates an agent folder with a root agent file and .env file

Set environment variables

bash
GOOGLE_API_KEY=your-google-api-key
COMPOSIO_API_KEY=your-composio-api-key
COMPOSIO_USER_ID=your-user-id-or-email

Save all your credentials in the .env file.

What's happening:

  • GOOGLE_API_KEY authenticates with Google's Gemini models
  • COMPOSIO_API_KEY authenticates with Composio
  • COMPOSIO_USER_ID identifies the user for session management

Import modules and validate environment

python
import os
import warnings

from composio import Composio
from composio_google import GoogleProvider
from dotenv import load_dotenv
from google.adk.agents.llm_agent import Agent
from google.adk.tools.mcp_tool.mcp_session_manager import StreamableHTTPConnectionParams
from google.adk.tools.mcp_tool.mcp_toolset import McpToolset

load_dotenv()

warnings.filterwarnings("ignore", message=".*BaseAuthenticatedTool.*")

GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
COMPOSIO_API_KEY = os.getenv("COMPOSIO_API_KEY")
COMPOSIO_USER_ID = os.getenv("COMPOSIO_USER_ID")

if not GOOGLE_API_KEY:
    raise ValueError("GOOGLE_API_KEY is not set in the environment.")
if not COMPOSIO_API_KEY:
    raise ValueError("COMPOSIO_API_KEY is not set in the environment.")
if not COMPOSIO_USER_ID:
    raise ValueError("COMPOSIO_USER_ID is not set in the environment.")
What's happening:
  • os reads environment variables
  • Composio is the main Composio SDK client
  • GoogleProvider declares that you are using Google ADK as the agent runtime
  • Agent is the Google ADK LLM agent class
  • McpToolset lets the ADK agent call MCP tools over HTTP

Create Composio client and Tool Router session

python
print("Initializing Composio client...")
composio_client = Composio(api_key=COMPOSIO_API_KEY, provider=GoogleProvider())

print("Creating Composio session...")
composio_session = composio_client.create(
    user_id=COMPOSIO_USER_ID,
    toolkits=["nano_nets"],
)

COMPOSIO_MCP_URL = composio_session.mcp.url
print(f"Composio MCP HTTP URL: {COMPOSIO_MCP_URL}")
What's happening:
  • Authenticates to Composio with your API key
  • Declares Google ADK as the provider
  • Spins up a short-lived MCP endpoint for your user and selected toolkit
  • Stores the MCP HTTP URL for the ADK MCP integration

Set up the McpToolset and create the Agent

python
print("Creating Composio toolset for the agent...")
composio_toolset = McpToolset(
    connection_params=StreamableHTTPConnectionParams(
        url=COMPOSIO_MCP_URL,
        headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")}
    )
)

root_agent = Agent(
    model="gemini-2.5-pro",
    name="composio_agent",
    description="An agent that uses Nano nets tools to perform actions.",
    instruction=(
        "You are a helpful assistant connected to Composio. "
        "You have the following tools available: "
        "COMPOSIO_SEARCH_TOOLS, COMPOSIO_MULTI_EXECUTE_TOOL, "
        "COMPOSIO_MANAGE_CONNECTIONS, COMPOSIO_REMOTE_BASH_TOOL, COMPOSIO_REMOTE_WORKBENCH. "
        "Use these tools to help users with Nano nets operations."
    ),
    tools=[composio_toolset],
)

print("\nAgent setup complete. You can now run this agent directly ;)")
What's happening:
  • Connects the ADK agent to the Composio MCP endpoint through McpToolset
  • Uses Gemini as the model powering the agent
  • Lists exact tool names in instruction to reduce misnamed tool calls

Run the agent

bash
# Run in CLI mode
adk run my_agent

# Or run in web UI mode
adk web
Execute the agent from the project root. The web command opens a web portal where you can chat with the agent. What's happening:
  • adk run runs the agent in CLI mode
  • adk web opens a web UI for interactive testing

Complete Code

Here's the complete code to get you started with Nano nets and Google ADK:

python
import os
import warnings

from composio import Composio
from composio_google import GoogleProvider
from dotenv import load_dotenv
from google.adk.agents.llm_agent import Agent
from google.adk.tools.mcp_tool.mcp_session_manager import StreamableHTTPConnectionParams
from google.adk.tools.mcp_tool.mcp_toolset import McpToolset

def main():
    try:
        load_dotenv()

        warnings.filterwarnings("ignore", message=".*BaseAuthenticatedTool.*")

        GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
        COMPOSIO_API_KEY = os.getenv("COMPOSIO_API_KEY")
        COMPOSIO_USER_ID = os.getenv("COMPOSIO_USER_ID")

        if not GOOGLE_API_KEY:
            raise ValueError("GOOGLE_API_KEY is not set in the environment.")
        if not COMPOSIO_API_KEY:
            raise ValueError("COMPOSIO_API_KEY is not set in the environment.")
        if not COMPOSIO_USER_ID:
            raise ValueError("COMPOSIO_USER_ID is not set in the environment.")

        print("Initializing Composio client...")
        composio_client = Composio(api_key=COMPOSIO_API_KEY, provider=GoogleProvider())

        print("Creating Composio session...")
        composio_session = composio_client.create(
            user_id=COMPOSIO_USER_ID,
            toolkits=["nano_nets"],
        )

        COMPOSIO_MCP_URL = composio_session.mcp.url
        print(f"Composio MCP HTTP URL: {COMPOSIO_MCP_URL}")

        print("Creating Composio toolset for the agent...")
        composio_toolset = McpToolset(
            connection_params=StreamableHTTPConnectionParams(
                url=COMPOSIO_MCP_URL,
                headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")}
            )
        )

        root_agent = Agent(
            model="gemini-2.5-pro",
            name="composio_agent",
            description="An agent that uses Nano nets tools to perform actions.",
            instruction=(
                "You are a helpful assistant connected to Composio. "
                "You have the following tools available: "
                "COMPOSIO_SEARCH_TOOLS, COMPOSIO_MULTI_EXECUTE_TOOL, "
                "COMPOSIO_MANAGE_CONNECTIONS, COMPOSIO_REMOTE_BASH_TOOL, COMPOSIO_REMOTE_WORKBENCH. "
                "Use these tools to help users with Nano nets operations."
            ),
            tools=[composio_toolset],
        )

        print("\nAgent setup complete. You can now run this agent directly ;)")

    except Exception as e:
        print(f"\nAn error occurred during agent setup: {e}")

if __name__ == "__main__":
    main()

Conclusion

You've successfully integrated Nano nets with the Google ADK through Composio's MCP Tool Router. Your agent can now interact with Nano nets using natural language commands.

Key takeaways:

  • The Tool Router approach dynamically routes requests to the appropriate Nano nets tools
  • Environment variables keep your credentials secure and separate from code
  • Clear agent instructions reduce tool calling errors
  • The ADK web UI provides an interactive interface for testing and development

You can extend this setup by adding more toolkits to the toolkits array in your session configuration.

How to build Nano nets MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Nano nets MCP?

With a standalone Nano nets MCP server, the agents and LLMs can only access a fixed set of Nano nets tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Nano nets and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with Google ADK?

Yes, you can. Google ADK fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Nano nets tools.

Can I manage the permissions and scopes for Nano nets while using Tool Router?

Yes, absolutely. You can configure which Nano nets scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Nano nets data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.