How to integrate Klipfolio MCP with CrewAI

Framework Integration Gradient
Klipfolio Logo
CrewAI Logo
divider

Introduction

This guide walks you through connecting Klipfolio to CrewAI using the Composio tool router. By the end, you'll have a working Klipfolio agent that can create a new dashboard for marketing kpis, list all available data sources in my account, append this week's sales csv to data source, refresh all data sources updated in last 24 hours through natural language commands.

This guide will help you understand how to give your CrewAI agent real control over a Klipfolio account through Composio's Klipfolio MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get a Composio API key and configure your Klipfolio connection
  • Set up CrewAI with an MCP enabled agent
  • Create a Tool Router session or standalone MCP server for Klipfolio
  • Build a conversational loop where your agent can execute Klipfolio operations

What is CrewAI?

CrewAI is a powerful framework for building multi-agent AI systems. It provides primitives for defining agents with specific roles, creating tasks, and orchestrating workflows through crews.

Key features include:

  • Agent Roles: Define specialized agents with specific goals and backstories
  • Task Management: Create tasks with clear descriptions and expected outputs
  • Crew Orchestration: Combine agents and tasks into collaborative workflows
  • MCP Integration: Connect to external tools through Model Context Protocol

What is the Klipfolio MCP server, and what's possible with it?

The Klipfolio MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Klipfolio account. It provides structured and secure access to your dashboards and data sources, so your agent can perform actions like creating dashboards, updating data sources, retrieving analytics, and managing visualizations on your behalf.

  • Effortless dashboard creation and management: Ask your agent to create new dashboards (tabs), organize visualizations, or fetch detailed information about existing dashboards for instant business insights.
  • Comprehensive data source handling: Let your agent list, create, refresh, or delete data sources, ensuring your reports are always up to date and data flows smoothly.
  • Automated data updating: Instruct your agent to append fresh data to data sources or trigger refreshes across multiple sources simultaneously, keeping analytics current without manual effort.
  • Visualization and klip management: Retrieve a list of all your klips (visual components), enabling your agent to analyze, summarize, or reference the data visualizations you rely on most.
  • User profile and account verification: Have the agent check authentication or pull user profile details, helping you audit access and monitor account activity with ease.

Supported Tools & Triggers

Tools
Append Data to Data SourceThis tool appends plain-text or csv data to an existing data source in klipfolio.
Create Data SourceThis tool creates a new data source in klipfolio.
Create Tab (Dashboard)This tool creates a new tab (dashboard) in klipfolio.
Delete Data SourceThis tool permanently removes a specified data source from the klipfolio account.
Get Dashboard DetailsThis tool retrieves detailed information about a specific dashboard (formerly known as tab) in klipfolio.
Get Data Source Instance DetailsThis tool retrieves detailed information about a specific data source instance in klipfolio.
Get KlipsThis tool retrieves a list of all klips accessible to the authenticated user.
Get User ProfileThis tool is used to retrieve the authenticated user's profile information and test the authentication status.
List All Data SourcesThis tool retrieves a list of all data sources associated with an authenticated klipfolio account.
Refresh Multiple Data SourcesThis tool allows users to refresh multiple data sources in klipfolio simultaneously.
Update Data SourceThis tool allows you to replace/update the data in an existing klipfolio data source.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Python 3.9 or higher
  • A Composio account and API key
  • A Klipfolio connection authorized in Composio
  • An OpenAI API key for the CrewAI LLM
  • Basic familiarity with Python

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

bash
pip install composio crewai crewai-tools python-dotenv
What's happening:
  • composio connects your agent to Klipfolio via MCP
  • crewai provides Agent, Task, Crew, and LLM primitives
  • crewai-tools includes MCP helpers
  • python-dotenv loads environment variables from .env

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
USER_ID=your_user_id_here
OPENAI_API_KEY=your_openai_api_key_here

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates with Composio
  • USER_ID scopes the session to your account
  • OPENAI_API_KEY lets CrewAI use your chosen OpenAI model

Import dependencies

python
from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter  # optional import if you plan to adapt tools
from composio import Composio
from dotenv import load_dotenv
import os
from crewai.mcp import MCPServerHTTP

load_dotenv()
What's happening:
  • CrewAI classes define agents and tasks, and run the workflow
  • MCPServerHTTP connects the agent to an MCP endpoint
  • Composio will give you a short lived Klipfolio MCP URL

Create a Composio Tool Router session for Klipfolio

python
composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
session = composio.create(
    user_id=os.getenv("USER_ID"),
    toolkits=["klipfolio"],
)
url = session.mcp.url
What's happening:
  • You create a Klipfolio only session through Composio
  • Composio returns an MCP HTTP URL that exposes Klipfolio tools

Configure the LLM

python
llm = LLM(
    model="gpt-5-mini",
    api_key=os.getenv("OPENAI_API_KEY"),
)
What's happening:
  • CrewAI will call this LLM for planning and responses
  • You can swap in a different model if needed

Attach the MCP server and create the agent

python
toolkit_agent = Agent(
    role="Klipfolio Assistant",
    goal="Help users interact with Klipfolio through natural language commands",
    backstory=(
        "You are an expert assistant with access to Klipfolio tools. "
        "You can perform various Klipfolio operations on behalf of the user."
    ),
    mcps=[
        MCPServerHTTP(
            url=url,
            streamable=True,
            cache_tools_list=True,
            headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")},
        ),
    ],
    llm=llm,
    verbose=True,
    max_iter=10,
)
What's happening:
  • MCPServerHTTP connects the agent to the Klipfolio MCP endpoint
  • cache_tools_list saves a tools catalog for faster subsequent runs
  • verbose helps you see what the agent is doing

Add a REPL loop with Task and Crew

python
print("Chat started! Type 'exit' or 'quit' to end.\n")
print("Try asking the agent to perform Klipfolio operations.\n")

conversation_context = ""

while True:
    user_input = input("You: ").strip()

    if user_input.lower() in ["exit", "quit", "bye"]:
        print("\nGoodbye!")
        break

    if not user_input:
        continue

    conversation_context += f"\nUser: {user_input}\n"
    print("\nAgent is thinking...\n")

    task = Task(
        description=(
            f"Based on the conversation history:\n{conversation_context}\n\n"
            f"Current user request: {user_input}\n\n"
            f"Please help the user with their Klipfolio related request."
        ),
        expected_output="A helpful response addressing the user's request",
        agent=toolkit_agent,
    )

    crew = Crew(
        agents=[toolkit_agent],
        tasks=[task],
        verbose=False,
    )

    result = crew.kickoff()
    response = str(result)

    conversation_context += f"Agent: {response}\n"
    print(f"Agent: {response}\n")
What's happening:
  • You build a simple chat loop and keep a running context
  • Each user turn becomes a Task handled by the same agent
  • Crew executes the task and returns a response

Run the application

python
if __name__ == "__main__":
    main()
What's happening:
  • Standard Python entry point so you can run python crewai_klipfolio_agent.py

Complete Code

Here's the complete code to get you started with Klipfolio and CrewAI:

python
# file: crewai_klipfolio_agent.py
from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter  # optional
from composio import Composio
from dotenv import load_dotenv
import os
from crewai.mcp import MCPServerHTTP

load_dotenv()

def main():
    # Initialize Composio and create a Klipfolio session
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
    session = composio.create(
        user_id=os.getenv("USER_ID"),
        toolkits=["klipfolio"],
    )
    url = session.mcp.url

    # Configure LLM
    llm = LLM(
        model="gpt-5-mini",
        api_key=os.getenv("OPENAI_API_KEY"),
    )

    # Create Klipfolio assistant agent
    toolkit_agent = Agent(
        role="Klipfolio Assistant",
        goal="Help users interact with Klipfolio through natural language commands",
        backstory=(
            "You are an expert assistant with access to Klipfolio tools. "
            "You can perform various Klipfolio operations on behalf of the user."
        ),
        mcps=[
            MCPServerHTTP(
                url=url,
                streamable=True,
                cache_tools_list=True,
                headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")},
            ),
        ],
        llm=llm,
        verbose=True,
        max_iter=10,
    )

    print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
    print("Try asking the agent to perform Klipfolio operations.\n")

    conversation_context = ""

    while True:
        user_input = input("You: ").strip()

        if user_input.lower() in ["exit", "quit", "bye"]:
            print("\nGoodbye!")
            break

        if not user_input:
            continue

        conversation_context += f"\nUser: {user_input}\n"
        print("\nAgent is thinking...\n")

        task = Task(
            description=(
                f"Based on the conversation history:\n{conversation_context}\n\n"
                f"Current user request: {user_input}\n\n"
                f"Please help the user with their Klipfolio related request."
            ),
            expected_output="A helpful response addressing the user's request",
            agent=toolkit_agent,
        )

        crew = Crew(
            agents=[toolkit_agent],
            tasks=[task],
            verbose=False,
        )

        result = crew.kickoff()
        response = str(result)

        conversation_context += f"Agent: {response}\n"
        print(f"Agent: {response}\n")

if __name__ == "__main__":
    main()

Conclusion

You now have a CrewAI agent connected to Klipfolio through Composio's Tool Router. The agent can perform Klipfolio operations through natural language commands. Next steps:
  • Add role-specific instructions to customize agent behavior
  • Plug in more toolkits for multi-app workflows
  • Chain tasks for complex multi-step operations

How to build Klipfolio MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Klipfolio MCP?

With a standalone Klipfolio MCP server, the agents and LLMs can only access a fixed set of Klipfolio tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Klipfolio and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with CrewAI?

Yes, you can. CrewAI fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Klipfolio tools.

Can I manage the permissions and scopes for Klipfolio while using Tool Router?

Yes, absolutely. You can configure which Klipfolio scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Klipfolio data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.