How to integrate Kaggle MCP with Pydantic AI

Framework Integration Gradient
Kaggle Logo
Pydantic AI Logo
divider

Introduction

This guide walks you through connecting Kaggle to Pydantic AI using the Composio tool router. By the end, you'll have a working Kaggle agent that can download data files for the titanic competition, create a new version of my covid-19 dataset, check processing status of my uploaded dataset, submit my predictions to the house prices competition through natural language commands.

This guide will help you understand how to give your Pydantic AI agent real control over a Kaggle account through Composio's Kaggle MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • How to set up your Composio API key and User ID
  • How to create a Composio Tool Router session for Kaggle
  • How to attach an MCP Server to a Pydantic AI agent
  • How to stream responses and maintain chat history
  • How to build a simple REPL-style chat interface to test your Kaggle workflows

What is Pydantic AI?

Pydantic AI is a Python framework for building AI agents with strong typing and validation. It leverages Pydantic's data validation capabilities to create robust, type-safe AI applications.

Key features include:

  • Type Safety: Built on Pydantic for automatic data validation
  • MCP Support: Native support for Model Context Protocol servers
  • Streaming: Built-in support for streaming responses
  • Async First: Designed for async/await patterns

What is the Kaggle MCP server, and what's possible with it?

The Kaggle MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Kaggle account. It provides structured and secure access to your Kaggle datasets, competitions, and configurations, so your agent can perform actions like downloading competition data, creating datasets, submitting entries, and managing dataset versions on your behalf.

  • Competition data access and download: Let your agent fetch and download competition datasets quickly by specifying a competition ID, so you always have the latest files for analysis.
  • Automated dataset creation and management: Have your agent create new Kaggle datasets, update metadata, and publish new dataset versions seamlessly, streamlining the process of sharing your work with the community.
  • Competition entry submission: Empower your agent to submit competition entries automatically once your solution is ready and uploaded, helping you participate in challenges without manual hassle.
  • Configuration management and setup: Allow your agent to initialize, locate, and update Kaggle API configuration files and keys, ensuring smooth and authenticated operations every time.
  • Dataset status monitoring: Ask your agent to check the status of uploaded datasets or processing jobs, so you always know when your data is ready for use or public sharing.

Supported Tools & Triggers

Tools
Download competition data filesTool to download competition data files.
Initialize Kaggle ConfigurationTool to initialize Kaggle API client configuration.
Dataset CreateTool to create a new Kaggle dataset with full metadata.
Get Dataset StatusTool to get the status of a dataset upload or processing job.
Create Dataset VersionTool to create a new dataset version on Kaggle.
Submit Competition EntryTool to submit an entry to a Kaggle competition.
Get Kaggle Config DirectoryTool to retrieve the directory of the Kaggle API configuration file.
Get Kaggle Config FileTool to retrieve the filename of the Kaggle API configuration file.
List Kaggle Configuration KeysTool to list local Kaggle API configuration keys.
Get Kaggle Config PathTool to retrieve local Kaggle API configuration file path.
Reset Kaggle ConfigurationTool to reset local Kaggle CLI configuration to defaults.
Set Kaggle ConfigurationTool to set a Kaggle CLI configuration parameter.
Unset Kaggle ConfigurationTool to unset a Kaggle CLI configuration parameter.
View Kaggle ConfigurationTool to view local Kaggle API configuration.
Kaggle Dataset InitTool to initialize a dataset-metadata.
List Kaggle Dataset FilesTool to list files in a Kaggle dataset.
Kaggle Kernel InitTool to initialize a kernel-metadata.
Download kernel outputTool to download the output of a Kaggle kernel.
Get Kernel StatusTool to get the status of a Kaggle kernel run.
List Kaggle DatasetsTool to list Kaggle datasets with filters and pagination.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Python 3.9 or higher
  • A Composio account with an active API key
  • Basic familiarity with Python and async programming

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

bash
pip install composio pydantic-ai python-dotenv

Install the required libraries.

What's happening:

  • composio connects your agent to external SaaS tools like Kaggle
  • pydantic-ai lets you create structured AI agents with tool support
  • python-dotenv loads your environment variables securely from a .env file

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
USER_ID=your_user_id_here
OPENAI_API_KEY=your_openai_api_key

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates your agent to Composio's API
  • USER_ID associates your session with your account for secure tool access
  • OPENAI_API_KEY to access OpenAI LLMs

Import dependencies

python
import asyncio
import os
from dotenv import load_dotenv
from composio import Composio
from pydantic_ai import Agent
from pydantic_ai.mcp import MCPServerStreamableHTTP

load_dotenv()
What's happening:
  • We load environment variables and import required modules
  • Composio manages connections to Kaggle
  • MCPServerStreamableHTTP connects to the Kaggle MCP server endpoint
  • Agent from Pydantic AI lets you define and run the AI assistant

Create a Tool Router Session

python
async def main():
    api_key = os.getenv("COMPOSIO_API_KEY")
    user_id = os.getenv("USER_ID")
    if not api_key or not user_id:
        raise RuntimeError("Set COMPOSIO_API_KEY and USER_ID in your environment")

    # Create a Composio Tool Router session for Kaggle
    composio = Composio(api_key=api_key)
    session = composio.create(
        user_id=user_id,
        toolkits=["kaggle"],
    )
    url = session.mcp.url
    if not url:
        raise ValueError("Composio session did not return an MCP URL")
What's happening:
  • We're creating a Tool Router session that gives your agent access to Kaggle tools
  • The create method takes the user ID and specifies which toolkits should be available
  • The returned session.mcp.url is the MCP server URL that your agent will use

Initialize the Pydantic AI Agent

python
# Attach the MCP server to a Pydantic AI Agent
kaggle_mcp = MCPServerStreamableHTTP(url, headers={"x-api-key": COMPOSIO_API_KEY})
agent = Agent(
    "openai:gpt-5",
    toolsets=[kaggle_mcp],
    instructions=(
        "You are a Kaggle assistant. Use Kaggle tools to help users "
        "with their requests. Ask clarifying questions when needed."
    ),
)
What's happening:
  • The MCP client connects to the Kaggle endpoint
  • The agent uses GPT-5 to interpret user commands and perform Kaggle operations
  • The instructions field defines the agent's role and behavior

Build the chat interface

python
# Simple REPL with message history
history = []
print("Chat started! Type 'exit' or 'quit' to end.\n")
print("Try asking the agent to help you with Kaggle.\n")

while True:
    user_input = input("You: ").strip()
    if user_input.lower() in {"exit", "quit", "bye"}:
        print("\nGoodbye!")
        break
    if not user_input:
        continue

    print("\nAgent is thinking...\n", flush=True)

    async with agent.run_stream(user_input, message_history=history) as stream_result:
        collected_text = ""
        async for chunk in stream_result.stream_output():
            text_piece = None
            if isinstance(chunk, str):
                text_piece = chunk
            elif hasattr(chunk, "delta") and isinstance(chunk.delta, str):
                text_piece = chunk.delta
            elif hasattr(chunk, "text"):
                text_piece = chunk.text
            if text_piece:
                collected_text += text_piece
        result = stream_result

    print(f"Agent: {collected_text}\n")
    history = result.all_messages()
What's happening:
  • The agent reads input from the terminal and streams its response
  • Kaggle API calls happen automatically under the hood
  • The model keeps conversation history to maintain context across turns

Run the application

python
if __name__ == "__main__":
    asyncio.run(main())
What's happening:
  • The asyncio loop launches the agent and keeps it running until you exit

Complete Code

Here's the complete code to get you started with Kaggle and Pydantic AI:

python
import asyncio
import os
from dotenv import load_dotenv
from composio import Composio
from pydantic_ai import Agent
from pydantic_ai.mcp import MCPServerStreamableHTTP

load_dotenv()

async def main():
    api_key = os.getenv("COMPOSIO_API_KEY")
    user_id = os.getenv("USER_ID")
    if not api_key or not user_id:
        raise RuntimeError("Set COMPOSIO_API_KEY and USER_ID in your environment")

    # Create a Composio Tool Router session for Kaggle
    composio = Composio(api_key=api_key)
    session = composio.create(
        user_id=user_id,
        toolkits=["kaggle"],
    )
    url = session.mcp.url
    if not url:
        raise ValueError("Composio session did not return an MCP URL")

    # Attach the MCP server to a Pydantic AI Agent
    kaggle_mcp = MCPServerStreamableHTTP(url, headers={"x-api-key": COMPOSIO_API_KEY})
    agent = Agent(
        "openai:gpt-5",
        toolsets=[kaggle_mcp],
        instructions=(
            "You are a Kaggle assistant. Use Kaggle tools to help users "
            "with their requests. Ask clarifying questions when needed."
        ),
    )

    # Simple REPL with message history
    history = []
    print("Chat started! Type 'exit' or 'quit' to end.\n")
    print("Try asking the agent to help you with Kaggle.\n")

    while True:
        user_input = input("You: ").strip()
        if user_input.lower() in {"exit", "quit", "bye"}:
            print("\nGoodbye!")
            break
        if not user_input:
            continue

        print("\nAgent is thinking...\n", flush=True)

        async with agent.run_stream(user_input, message_history=history) as stream_result:
            collected_text = ""
            async for chunk in stream_result.stream_output():
                text_piece = None
                if isinstance(chunk, str):
                    text_piece = chunk
                elif hasattr(chunk, "delta") and isinstance(chunk.delta, str):
                    text_piece = chunk.delta
                elif hasattr(chunk, "text"):
                    text_piece = chunk.text
                if text_piece:
                    collected_text += text_piece
            result = stream_result

        print(f"Agent: {collected_text}\n")
        history = result.all_messages()

if __name__ == "__main__":
    asyncio.run(main())

Conclusion

You've built a Pydantic AI agent that can interact with Kaggle through Composio's Tool Router. With this setup, your agent can perform real Kaggle actions through natural language. You can extend this further by:
  • Adding other toolkits like Gmail, HubSpot, or Salesforce
  • Building a web-based chat interface around this agent
  • Using multiple MCP endpoints to enable cross-app workflows (for example, Gmail + Kaggle for workflow automation)
This architecture makes your AI agent "agent-native", able to securely use APIs in a unified, composable way without custom integrations.

How to build Kaggle MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Kaggle MCP?

With a standalone Kaggle MCP server, the agents and LLMs can only access a fixed set of Kaggle tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Kaggle and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with Pydantic AI?

Yes, you can. Pydantic AI fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Kaggle tools.

Can I manage the permissions and scopes for Kaggle while using Tool Router?

Yes, absolutely. You can configure which Kaggle scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Kaggle data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.