How to integrate Kadoa MCP with OpenAI Agents SDK

Framework Integration Gradient
Kadoa Logo
open-ai-agents-sdk Logo
divider

Introduction

This guide walks you through connecting Kadoa to the OpenAI Agents SDK using the Composio tool router. By the end, you'll have a working Kadoa agent that can fetch the latest data from my workflow, check crawl status for session abc123, list all pages crawled in last run, enable data validation for workflow xyz789 through natural language commands.

This guide will help you understand how to give your OpenAI Agents SDK agent real control over a Kadoa account through Composio's Kadoa MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get and set up your OpenAI and Composio API keys
  • Install the necessary dependencies
  • Initialize Composio and create a Tool Router session for Kadoa
  • Configure an AI agent that can use Kadoa as a tool
  • Run a live chat session where you can ask the agent to perform Kadoa operations

What is open-ai-agents-sdk?

The OpenAI Agents SDK is a lightweight framework for building AI agents that can use tools and maintain conversation state. It provides a simple interface for creating agents with hosted MCP tool support.

Key features include:

  • Hosted MCP Tools: Connect to external services through hosted MCP endpoints
  • SQLite Sessions: Persist conversation history across interactions
  • Simple API: Clean interface with Agent, Runner, and tool configuration
  • Streaming Support: Real-time response streaming for interactive applications

What is the Kadoa MCP server, and what's possible with it?

The Kadoa MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Kadoa account. It provides structured and secure access to your data extraction workflows, so your agent can launch crawls, monitor sessions, retrieve extracted data, and manage workflow configurations automatically on your behalf.

  • Automated workflow monitoring and management: Ask your agent to fetch workflow configurations, enable data validation, or get the latest results from any extraction workflow you have set up.
  • Crawling session control: Have your agent check the status of crawl sessions, list all crawled pages, and pull the raw content (HTML or Markdown) from any page processed by a workflow.
  • Notification channel setup and retrieval: Direct your agent to create notification channels, list available notification event types, and fetch specific channel configurations for streamlined alerting.
  • Location and environment awareness: Let your agent retrieve all supported locations to ensure workflows run in the right environment before launching new extraction jobs.
  • Seamless data access: Instruct your agent to quickly get the most recent data output from any workflow, keeping your automations and dashboards always up to date.

Supported Tools & Triggers

Tools
Create Notification ChannelTool to create a notification channel for alerts delivery.
Enable Data ValidationTool to enable data validation on a specified workflow.
Fetch workflow configurationTool to fetch an advanced workflow’s configuration details.
Get all locationsTool to retrieve a list of all available locations.
Get Crawled Page ContentTool to retrieve content of a crawled page.
Get Crawled PagesTool to list pages crawled during a session.
Get Crawl StatusTool to fetch current status of a crawling session.
Get Notification Event TypesTool to retrieve supported notification event types.
Get Latest Workflow DataTool to retrieve the most recent data produced by a workflow.
Get Notification ChannelTool to retrieve details of a specific notification channel.
Get Notification SettingTool to retrieve a specific notification setting by its identifier.
Get validation configurationTool to retrieve the configuration settings for data validation.
Get Workflow Run HistoryTool to fetch workflow run history.
Get WorkflowsTool to retrieve all workflows.
Get Workflow Validation ResultsTool to retrieve the latest validation results for a workflow job.
List Validation RulesTool to list all data validation rules with optional pagination and filtering.
Create Advanced WorkflowTool to create an advanced workflow.
Start Crawl SessionTool to start a web crawling session.
Create Notification SettingTool to create a notification setting linking channels to events.
Post Notification TestTool to send a test notification event.
Subscribe to Webhook EventsTool to subscribe to specified webhook events.
Create WorkflowTool to create a new workflow in kadoa.
Configure Workflow MonitoringTool to configure monitoring for a workflow to detect data changes by updating workflow metadata.
Post Workflow Validation RuleTool to generate and add a new validation rule to a workflow.
Update Notification ChannelTool to update an existing notification channel.
Run Ad-hoc ExtractionTool to synchronously extract data from a URL using a given template.
Unsubscribe from Webhook EventsTool to unsubscribe from webhook event notifications by deleting a notification setting.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Composio API Key and OpenAI API Key
  • Primary know-how of OpenAI Agents SDK
  • A live Kadoa project
  • Some knowledge of Python or Typescript

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key

Install dependencies

pip install composio_openai_agents openai-agents python-dotenv

Install the Composio SDK and the OpenAI Agents SDK.

Set up environment variables

bash
OPENAI_API_KEY=sk-...your-api-key
COMPOSIO_API_KEY=your-api-key
USER_ID=composio_user@gmail.com

Create a .env file and add your OpenAI and Composio API keys.

Import dependencies

import asyncio
import os
from dotenv import load_dotenv

from composio import Composio
from composio_openai_agents import OpenAIAgentsProvider
from agents import Agent, Runner, HostedMCPTool, SQLiteSession
What's happening:
  • You're importing all necessary libraries.
  • The Composio and OpenAIAgentsProvider classes are imported to connect your OpenAI agent to Composio tools like Kadoa.

Set up the Composio instance

load_dotenv()

api_key = os.getenv("COMPOSIO_API_KEY")
user_id = os.getenv("USER_ID")

if not api_key:
    raise RuntimeError("COMPOSIO_API_KEY is not set. Create a .env file with COMPOSIO_API_KEY=your_key")

# Initialize Composio
composio = Composio(api_key=api_key, provider=OpenAIAgentsProvider())
What's happening:
  • load_dotenv() loads your .env file so OPENAI_API_KEY and COMPOSIO_API_KEY are available as environment variables.
  • Creating a Composio instance using the API Key and OpenAIAgentsProvider class.

Create a Tool Router session

# Create a Kadoa Tool Router session
session = composio.create(
    user_id=user_id,
    toolkits=["kadoa"]
)

mcp_url = session.mcp.url

What is happening:

  • You give the Tool Router the user id and the toolkits you want available. Here, it is only kadoa.
  • The router checks the user's Kadoa connection and prepares the MCP endpoint.
  • The returned session.mcp.url is the MCP URL that your agent will use to access Kadoa.
  • This approach keeps things lightweight and lets the agent request Kadoa tools only when needed during the conversation.

Configure the agent

# Configure agent with MCP tool
agent = Agent(
    name="Assistant",
    model="gpt-5",
    instructions=(
        "You are a helpful assistant that can access Kadoa. "
        "Help users perform Kadoa operations through natural language."
    ),
    tools=[
        HostedMCPTool(
            tool_config={
                "type": "mcp",
                "server_label": "tool_router",
                "server_url": mcp_url,
                "headers": {"x-api-key": api_key},
                "require_approval": "never",
            }
        )
    ],
)
What's happening:
  • We're creating an Agent instance with a name, model (gpt-5), and clear instructions about its purpose.
  • The agent's instructions tell it that it can access Kadoa and help with queries, inserts, updates, authentication, and fetching database information.
  • The tools array includes a HostedMCPTool that connects to the MCP server URL we created earlier.
  • The headers dict includes the Composio API key for secure authentication with the MCP server.
  • require_approval: 'never' means the agent can execute Kadoa operations without asking for permission each time, making interactions smoother.

Start chat loop and handle conversation

print("\nComposio Tool Router session created.")

chat_session = SQLiteSession("conversation_openai_toolrouter")

print("\nChat started. Type your requests below.")
print("Commands: 'exit', 'quit', or 'q' to end\n")

async def main():
    try:
        result = await Runner.run(
            agent,
            "What can you help me with?",
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")
    except Exception as e:
        print(f"Error: {e}\n")

    while True:
        user_input = input("You: ").strip()
        if user_input.lower() in {"exit", "quit", "q"}:
            print("Goodbye!")
            break

        result = await Runner.run(
            agent,
            user_input,
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")

asyncio.run(main())
What's happening:
  • The program prints a session URL that you visit to authorize Kadoa.
  • After authorization, the chat begins.
  • Each message you type is processed by the agent using Runner.run().
  • The responses are printed to the console, and conversations are saved locally using SQLite.
  • Typing exit, quit, or q cleanly ends the chat.

Complete Code

Here's the complete code to get you started with Kadoa and open-ai-agents-sdk:

import asyncio
import os
from dotenv import load_dotenv

from composio import Composio
from composio_openai_agents import OpenAIAgentsProvider
from agents import Agent, Runner, HostedMCPTool, SQLiteSession

load_dotenv()

api_key = os.getenv("COMPOSIO_API_KEY")
user_id = os.getenv("USER_ID")

if not api_key:
    raise RuntimeError("COMPOSIO_API_KEY is not set. Create a .env file with COMPOSIO_API_KEY=your_key")

# Initialize Composio
composio = Composio(api_key=api_key, provider=OpenAIAgentsProvider())

# Create Tool Router session
session = composio.create(
    user_id=user_id,
    toolkits=["kadoa"]
)
mcp_url = session.mcp.url

# Configure agent with MCP tool
agent = Agent(
    name="Assistant",
    model="gpt-5",
    instructions=(
        "You are a helpful assistant that can access Kadoa. "
        "Help users perform Kadoa operations through natural language."
    ),
    tools=[
        HostedMCPTool(
            tool_config={
                "type": "mcp",
                "server_label": "tool_router",
                "server_url": mcp_url,
                "headers": {"x-api-key": api_key},
                "require_approval": "never",
            }
        )
    ],
)

print("\nComposio Tool Router session created.")

chat_session = SQLiteSession("conversation_openai_toolrouter")

print("\nChat started. Type your requests below.")
print("Commands: 'exit', 'quit', or 'q' to end\n")

async def main():
    try:
        result = await Runner.run(
            agent,
            "What can you help me with?",
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")
    except Exception as e:
        print(f"Error: {e}\n")

    while True:
        user_input = input("You: ").strip()
        if user_input.lower() in {"exit", "quit", "q"}:
            print("Goodbye!")
            break

        result = await Runner.run(
            agent,
            user_input,
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")

asyncio.run(main())

Conclusion

This was a starter code for integrating Kadoa MCP with OpenAI Agents SDK to build a functional AI agent that can interact with Kadoa.

Key features:

  • Hosted MCP tool integration through Composio's Tool Router
  • SQLite session persistence for conversation history
  • Simple async chat loop for interactive testing
You can extend this by adding more toolkits, implementing custom business logic, or building a web interface around the agent.

How to build Kadoa MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Kadoa MCP?

With a standalone Kadoa MCP server, the agents and LLMs can only access a fixed set of Kadoa tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Kadoa and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with OpenAI Agents SDK?

Yes, you can. OpenAI Agents SDK fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Kadoa tools.

Can I manage the permissions and scopes for Kadoa while using Tool Router?

Yes, absolutely. You can configure which Kadoa scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Kadoa data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.