How to integrate Dungeon fighter online MCP with Vercel AI SDK

Framework Integration Gradient
Dungeon fighter online Logo
Vercel AI SDK Logo
divider

Introduction

This guide walks you through connecting Dungeon fighter online to Vercel AI SDK using the Composio tool router. By the end, you'll have a working Dungeon fighter online agent that can show all servers available this week, find characters named arin on cain server, get latest status info for my character, list equipped buff avatars for my main through natural language commands.

This guide will help you understand how to give your Vercel AI SDK agent real control over a Dungeon fighter online account through Composio's Dungeon fighter online MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • How to set up and configure a Vercel AI SDK agent with Dungeon fighter online integration
  • Using Composio's Tool Router to dynamically load and access Dungeon fighter online tools
  • Creating an MCP client connection using HTTP transport
  • Building an interactive CLI chat interface with conversation history management
  • Handling tool calls and results within the Vercel AI SDK framework

What is Vercel AI SDK?

The Vercel AI SDK is a TypeScript library for building AI-powered applications. It provides tools for creating agents that can use external services and maintain conversation state.

Key features include:

  • streamText: Core function for streaming responses with real-time tool support
  • MCP Client: Built-in support for Model Context Protocol
  • Step Counting: Control multi-step tool execution
  • OpenAI Provider: Native integration with OpenAI models

What is the Dungeon fighter online MCP server, and what's possible with it?

The Dungeon fighter online MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Dungeon Fighter Online account. It provides structured and secure access to your character and server data, so your agent can perform actions like searching for characters, retrieving character stats, checking equipment, and exploring timelines on your behalf.

  • Character search and discovery: Effortlessly search for characters by name on any available server or fetch detailed character lists.
  • Comprehensive character stats retrieval: Instantly pull base information and detailed status, including active buffs and skill information, for any character you own.
  • Equipment and avatar inspection: View your character's equipped items and inspect skill buff avatar gear to optimize your loadout.
  • Timeline and history tracking: Retrieve and review a character's timeline to see recent game activities and progression milestones.
  • Server information lookup: Quickly access the full list of available DFO servers to stay up to date with the game environment.

Supported Tools & Triggers

Tools
Character Base InformationTool to retrieve base information of a specific character.
Character SearchTool to search for characters by name on a given server.
Get Character Skill Buff AvatarTool to fetch skill buff avatar equipment for a character.
Get Character Skill Buff StatusTool to fetch character's skill buff status information.
Character Status InfoTool to retrieve status information of a specific character.
Character TimelineTool to retrieve the timeline of a specific character.
Get Character Skill Buff EquipmentTool to retrieve skill buff equipment details for a character.
Get Server ListTool to retrieve the list of available game servers.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before you begin, make sure you have:
  • Node.js and npm installed
  • A Composio account with API key
  • An OpenAI API key

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install required dependencies

bash
npm install @ai-sdk/openai @ai-sdk/mcp @composio/core ai dotenv

First, install the necessary packages for your project.

What you're installing:

  • @ai-sdk/openai: Vercel AI SDK's OpenAI provider
  • @ai-sdk/mcp: MCP client for Vercel AI SDK
  • @composio/core: Composio SDK for tool integration
  • ai: Core Vercel AI SDK
  • dotenv: Environment variable management

Set up environment variables

bash
OPENAI_API_KEY=your_openai_api_key_here
COMPOSIO_API_KEY=your_composio_api_key_here
COMPOSIO_USER_ID=your_user_id_here

Create a .env file in your project root.

What's needed:

  • OPENAI_API_KEY: Your OpenAI API key for GPT model access
  • COMPOSIO_API_KEY: Your Composio API key for tool access
  • COMPOSIO_USER_ID: A unique identifier for the user session

Import required modules and validate environment

typescript
import "dotenv/config";
import { openai } from "@ai-sdk/openai";
import { Composio } from "@composio/core";
import * as readline from "readline";
import { streamText, type ModelMessage, stepCountIs } from "ai";
import { experimental_createMCPClient as createMCPClient } from "@ai-sdk/mcp";

const composioAPIKey = process.env.COMPOSIO_API_KEY;
const composioUserID = process.env.COMPOSIO_USER_ID;

if (!process.env.OPENAI_API_KEY) throw new Error("OPENAI_API_KEY is not set");
if (!composioAPIKey) throw new Error("COMPOSIO_API_KEY is not set");
if (!composioUserID) throw new Error("COMPOSIO_USER_ID is not set");

const composio = new Composio({
  apiKey: composioAPIKey,
});
What's happening:
  • We're importing all necessary libraries including Vercel AI SDK's OpenAI provider and Composio
  • The dotenv/config import automatically loads environment variables
  • The MCP client import enables connection to Composio's tool server

Create Tool Router session and initialize MCP client

typescript
async function main() {
  // Create a tool router session for the user
  const { session } = await composio.create(composioUserID!, {
    toolkits: ["dungeon_fighter_online"],
  });

  const mcpUrl = session.mcp.url;
What's happening:
  • We're creating a Tool Router session that gives your agent access to Dungeon fighter online tools
  • The create method takes the user ID and specifies which toolkits should be available
  • The returned mcp object contains the URL and authentication headers needed to connect to the MCP server
  • This session provides access to all Dungeon fighter online-related tools through the MCP protocol

Connect to MCP server and retrieve tools

typescript
const mcpClient = await createMCPClient({
  transport: {
    type: "http",
    url: mcpUrl,
    headers: session.mcp.headers, // Authentication headers for the Composio MCP server
  },
});

const tools = await mcpClient.tools();
What's happening:
  • We're creating an MCP client that connects to our Composio Tool Router session via HTTP
  • The mcp.url provides the endpoint, and mcp.headers contains authentication credentials
  • The type: "http" is important - Composio requires HTTP transport
  • tools() retrieves all available Dungeon fighter online tools that the agent can use

Initialize conversation and CLI interface

typescript
let messages: ModelMessage[] = [];

console.log("Chat started! Type 'exit' or 'quit' to end the conversation.\n");
console.log(
  "Ask any questions related to dungeon_fighter_online, like summarize my last 5 emails, send an email, etc... :)))\n",
);

const rl = readline.createInterface({
  input: process.stdin,
  output: process.stdout,
  prompt: "> ",
});

rl.prompt();
What's happening:
  • We initialize an empty messages array to maintain conversation history
  • A readline interface is created to accept user input from the command line
  • Instructions are displayed to guide the user on how to interact with the agent

Handle user input and stream responses with real-time tool feedback

typescript
rl.on("line", async (userInput: string) => {
  const trimmedInput = userInput.trim();

  if (["exit", "quit", "bye"].includes(trimmedInput.toLowerCase())) {
    console.log("\nGoodbye!");
    rl.close();
    process.exit(0);
  }

  if (!trimmedInput) {
    rl.prompt();
    return;
  }

  messages.push({ role: "user", content: trimmedInput });
  console.log("\nAgent is thinking...\n");

  try {
    const stream = streamText({
      model: openai("gpt-5"),
      messages,
      tools,
      toolChoice: "auto",
      stopWhen: stepCountIs(10),
      onStepFinish: (step) => {
        for (const toolCall of step.toolCalls) {
          console.log(`[Using tool: ${toolCall.toolName}]`);
          }
          if (step.toolCalls.length > 0) {
            console.log(""); // Add space after tool calls
          }
        },
      });

      for await (const chunk of stream.textStream) {
        process.stdout.write(chunk);
      }

      console.log("\n\n---\n");

      // Get final result for message history
      const response = await stream.response;
      if (response?.messages?.length) {
        messages.push(...response.messages);
      }
    } catch (error) {
      console.error("\nAn error occurred while talking to the agent:");
      console.error(error);
      console.log(
        "\nYou can try again or restart the app if it keeps happening.\n",
      );
    } finally {
      rl.prompt();
    }
  });

  rl.on("close", async () => {
    await mcpClient.close();
    console.log("\n👋 Session ended.");
    process.exit(0);
  });
}

main().catch((err) => {
  console.error("Fatal error:", err);
  process.exit(1);
});
What's happening:
  • We use streamText instead of generateText to stream responses in real-time
  • toolChoice: "auto" allows the model to decide when to use Dungeon fighter online tools
  • stopWhen: stepCountIs(10) allows up to 10 steps for complex multi-tool operations
  • onStepFinish callback displays which tools are being used in real-time
  • We iterate through the text stream to create a typewriter effect as the agent responds
  • The complete response is added to conversation history to maintain context
  • Errors are caught and displayed with helpful retry suggestions

Complete Code

Here's the complete code to get you started with Dungeon fighter online and Vercel AI SDK:

typescript
import "dotenv/config";
import { openai } from "@ai-sdk/openai";
import { Composio } from "@composio/core";
import * as readline from "readline";
import { streamText, type ModelMessage, stepCountIs } from "ai";
import { experimental_createMCPClient as createMCPClient } from "@ai-sdk/mcp";

const composioAPIKey = process.env.COMPOSIO_API_KEY;
const composioUserID = process.env.COMPOSIO_USER_ID;

if (!process.env.OPENAI_API_KEY) throw new Error("OPENAI_API_KEY is not set");
if (!composioAPIKey) throw new Error("COMPOSIO_API_KEY is not set");
if (!composioUserID) throw new Error("COMPOSIO_USER_ID is not set");

const composio = new Composio({
  apiKey: composioAPIKey,
});

async function main() {
  // Create a tool router session for the user
  const { session } = await composio.create(composioUserID!, {
    toolkits: ["dungeon_fighter_online"],
  });

  const mcpUrl = session.mcp.url;

  const mcpClient = await createMCPClient({
    transport: {
      type: "http",
      url: mcpUrl,
      headers: session.mcp.headers, // Authentication headers for the Composio MCP server
    },
  });

  const tools = await mcpClient.tools();

  let messages: ModelMessage[] = [];

  console.log("Chat started! Type 'exit' or 'quit' to end the conversation.\n");
  console.log(
    "Ask any questions related to dungeon_fighter_online, like summarize my last 5 emails, send an email, etc... :)))\n",
  );

  const rl = readline.createInterface({
    input: process.stdin,
    output: process.stdout,
    prompt: "> ",
  });

  rl.prompt();

  rl.on("line", async (userInput: string) => {
    const trimmedInput = userInput.trim();

    if (["exit", "quit", "bye"].includes(trimmedInput.toLowerCase())) {
      console.log("\nGoodbye!");
      rl.close();
      process.exit(0);
    }

    if (!trimmedInput) {
      rl.prompt();
      return;
    }

    messages.push({ role: "user", content: trimmedInput });
    console.log("\nAgent is thinking...\n");

    try {
      const stream = streamText({
        model: openai("gpt-5"),
        messages,
        tools,
        toolChoice: "auto",
        stopWhen: stepCountIs(10),
        onStepFinish: (step) => {
          for (const toolCall of step.toolCalls) {
            console.log(`[Using tool: ${toolCall.toolName}]`);
          }
          if (step.toolCalls.length > 0) {
            console.log(""); // Add space after tool calls
          }
        },
      });

      for await (const chunk of stream.textStream) {
        process.stdout.write(chunk);
      }

      console.log("\n\n---\n");

      // Get final result for message history
      const response = await stream.response;
      if (response?.messages?.length) {
        messages.push(...response.messages);
      }
    } catch (error) {
      console.error("\nAn error occurred while talking to the agent:");
      console.error(error);
      console.log(
        "\nYou can try again or restart the app if it keeps happening.\n",
      );
    } finally {
      rl.prompt();
    }
  });

  rl.on("close", async () => {
    await mcpClient.close();
    console.log("\n👋 Session ended.");
    process.exit(0);
  });
}

main().catch((err) => {
  console.error("Fatal error:", err);
  process.exit(1);
});

Conclusion

You've successfully built a Dungeon fighter online agent using the Vercel AI SDK with streaming capabilities! This implementation provides a powerful foundation for building AI applications with natural language interfaces and real-time feedback.

Key features of this implementation:

  • Real-time streaming responses for a better user experience with typewriter effect
  • Live tool execution feedback showing which tools are being used as the agent works
  • Dynamic tool loading through Composio's Tool Router with secure authentication
  • Multi-step tool execution with configurable step limits (up to 10 steps)
  • Comprehensive error handling for robust agent execution
  • Conversation history maintenance for context-aware responses

You can extend this further by adding custom error handling, implementing specific business logic, or integrating additional Composio toolkits to create multi-app workflows.

How to build Dungeon fighter online MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Dungeon fighter online MCP?

With a standalone Dungeon fighter online MCP server, the agents and LLMs can only access a fixed set of Dungeon fighter online tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Dungeon fighter online and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with Vercel AI SDK?

Yes, you can. Vercel AI SDK fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Dungeon fighter online tools.

Can I manage the permissions and scopes for Dungeon fighter online while using Tool Router?

Yes, absolutely. You can configure which Dungeon fighter online scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Dungeon fighter online data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.