How to integrate D2lbrightspace MCP with LangChain

Framework Integration Gradient
D2lbrightspace Logo
LangChain Logo
divider

Introduction

This guide walks you through connecting D2lbrightspace to LangChain using the Composio tool router. By the end, you'll have a working D2lbrightspace agent that can create a new quiz for my math course, add a new user to the spring semester, copy an instructor role for a new department, delete an outdated course template from the system through natural language commands.

This guide will help you understand how to give your LangChain agent real control over a D2lbrightspace account through Composio's D2lbrightspace MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get and set up your OpenAI and Composio API keys
  • Connect your D2lbrightspace project to Composio
  • Create a Tool Router MCP session for D2lbrightspace
  • Initialize an MCP client and retrieve D2lbrightspace tools
  • Build a LangChain agent that can interact with D2lbrightspace
  • Set up an interactive chat interface for testing

What is LangChain?

LangChain is a framework for developing applications powered by language models. It provides tools and abstractions for building agents that can reason, use tools, and maintain conversation context.

Key features include:

  • Agent Framework: Build agents that can use tools and make decisions
  • MCP Integration: Connect to external services through Model Context Protocol adapters
  • Memory Management: Maintain conversation history across interactions
  • Multi-Provider Support: Works with OpenAI, Anthropic, and other LLM providers

What is the D2lbrightspace MCP server, and what's possible with it?

The D2lbrightspace MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your D2L Brightspace account. It provides structured and secure access to your LMS, so your agent can perform actions like creating courses, managing quizzes, handling user enrollment, and automating gradebook operations on your behalf.

  • Automated course creation and management: Instantly create new courses, course offerings, or templates, and streamline updates or deletions without manual intervention.
  • Quiz and assessment automation: Let your agent set up new quizzes, organize quiz categories, and configure assessment parameters to enhance the learning experience.
  • Gradebook and feedback management: Effortlessly create, modify, or delete grade objects to keep your course grading up to date and provide prompt feedback to learners.
  • User enrollment and management: Create new user accounts, manage user roles, and handle enrollment or impersonation tasks to simplify onboarding and administration.
  • Role and permissions control: Copy existing roles, adjust specific permissions, and fine-tune access for different user groups—all directly through your agent.

Supported Tools & Triggers

Tools
Copy RoleCreates a new role copied from an existing role in d2l brightspace.
Create Course OfferingCreates a new course offering in d2l brightspace.
Create Course TemplateCreates a new course template in d2l brightspace.
Create Grade ObjectCreates a new grade object for a particular org unit.
Create QuizCreates a new quiz in d2l brightspace.
Create Quiz CategoryCreates a new quiz category in d2l brightspace.
Create UserCreates a new user entity in d2l brightspace.
Delete Course TemplateDeletes a course template from d2l brightspace.
Delete CourseDeletes a course offering from d2l brightspace.
Delete Grade ObjectDeletes a specific grade object from an org unit.
Delete QuizDeletes a quiz from d2l brightspace.
Delete Quiz CategoryDeletes a quiz category from d2l brightspace.
Delete UserDeletes a user entity from d2l brightspace.
Delete User DemographicsDeletes one or more of a particular user's associated demographics entries.
Get Course OfferingRetrieves a specific course offering from d2l brightspace.
Get Course TemplateRetrieves a course template from d2l brightspace.
Get Course SchemaRetrieves the list of parent org unit type constraints for course offerings.
Get Course Template SchemaRetrieves the list of parent org unit type constraints for course offerings built on this template.
Get Current User InformationRetrieves the current user context's user information from d2l brightspace.
Get Enrolled RolesRetrieves a list of all enrolled user roles the calling user can view in an org unit.
Get Grade AccessRetrieves a list of users with access to a specified grade.
Get Grade ObjectRetrieves a specific grade object for a particular org unit.
Get Grade ObjectsRetrieves all current grade objects for a particular org unit.
Get Grade SetupRetrieves the grades configuration for an org unit.
Get Grade StatisticsRetrieves statistics for a specified grade item.
Get Org Unit DemographicsRetrieves all demographics entries for users enrolled in a particular org unit.
Get QuizRetrieves a specific quiz from an org unit.
Get Quiz AccessRetrieves a list of users with access to a specified quiz.
Get Quiz AttemptRetrieves a specific quiz attempt.
Get Quiz AttemptsRetrieves a list of attempts for a quiz.
Get Quiz CategoriesRetrieves all quiz categories belonging to an org unit.
Get Quiz CategoryRetrieves a specific quiz category from an org unit.
Get Quiz QuestionsRetrieves all questions in a quiz.
Get QuizzesRetrieves all quizzes belonging to an org unit.
Get Role by IDRetrieves a particular user role from d2l brightspace by its id.
Get RolesRetrieves a list of all known user roles in d2l brightspace.
Get User by IDRetrieves data for a particular user from d2l brightspace.
Get UsersRetrieves data for one or more users from d2l brightspace.
Update Course OfferingUpdates an existing course offering in d2l brightspace.
Update Course TemplateUpdates an existing course template in d2l brightspace.
Update Grade ObjectUpdates a specific grade object.
Update Grade SetupUpdates the grades configuration for an org unit.
Update QuizUpdates an existing quiz in d2l brightspace.
Update Quiz CategoryUpdates an existing quiz category in d2l brightspace.
Update UserUpdates an existing user entity in d2l brightspace.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting this tutorial, make sure you have:
  • Python 3.10 or higher installed on your system
  • A Composio account with an API key
  • An OpenAI API key
  • Basic familiarity with Python and async programming

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

pip install composio-langchain langchain-mcp-adapters langchain python-dotenv

Install the required packages for LangChain with MCP support.

What's happening:

  • composio-langchain provides Composio integration for LangChain
  • langchain-mcp-adapters enables MCP client connections
  • langchain is the core agent framework
  • python-dotenv loads environment variables

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
COMPOSIO_USER_ID=your_composio_user_id_here
OPENAI_API_KEY=your_openai_api_key_here

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates your requests to Composio's API
  • COMPOSIO_USER_ID identifies the user for session management
  • OPENAI_API_KEY enables access to OpenAI's language models

Import dependencies

from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain.agents import create_agent
from dotenv import load_dotenv
from composio import Composio
import asyncio
import os

load_dotenv()
What's happening:
  • We're importing LangChain's MCP adapter and Composio SDK
  • The dotenv import loads environment variables from your .env file
  • This setup prepares the foundation for connecting LangChain with D2lbrightspace functionality through MCP

Initialize Composio client

async def main():
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))

    if not os.getenv("COMPOSIO_API_KEY"):
        raise ValueError("COMPOSIO_API_KEY is not set")
    if not os.getenv("COMPOSIO_USER_ID"):
        raise ValueError("COMPOSIO_USER_ID is not set")
What's happening:
  • We're loading the COMPOSIO_API_KEY from environment variables and validating it exists
  • Creating a Composio instance that will manage our connection to D2lbrightspace tools
  • Validating that COMPOSIO_USER_ID is also set before proceeding

Create a Tool Router session

# Create Tool Router session for D2lbrightspace
session = composio.create(
    user_id=os.getenv("COMPOSIO_USER_ID"),
    toolkits=['d2lbrightspace']
)

url = session.mcp.url
What's happening:
  • We're creating a Tool Router session that gives your agent access to D2lbrightspace tools
  • The create method takes the user ID and specifies which toolkits should be available
  • The returned session.mcp.url is the MCP server URL that your agent will use
  • This approach allows the agent to dynamically load and use D2lbrightspace tools as needed

Configure the agent with the MCP URL

client = MultiServerMCPClient({
    "d2lbrightspace-agent": {
        "transport": "streamable_http",
        "url": session.mcp.url,
        "headers": {
            "x-api-key": os.getenv("COMPOSIO_API_KEY")
        }
    }
})

tools = await client.get_tools()

agent = create_agent("gpt-5", tools)
What's happening:
  • We're creating a MultiServerMCPClient that connects to our D2lbrightspace MCP server via HTTP
  • The client is configured with a name and the URL from our Tool Router session
  • get_tools() retrieves all available D2lbrightspace tools that the agent can use
  • We're creating a LangChain agent using the GPT-5 model

Set up interactive chat interface

conversation_history = []

print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
print("Ask any D2lbrightspace related question or task to the agent.\n")

while True:
    user_input = input("You: ").strip()

    if user_input.lower() in ['exit', 'quit', 'bye']:
        print("\nGoodbye!")
        break

    if not user_input:
        continue

    conversation_history.append({"role": "user", "content": user_input})
    print("\nAgent is thinking...\n")

    response = await agent.ainvoke({"messages": conversation_history})
    conversation_history = response['messages']
    final_response = response['messages'][-1].content
    print(f"Agent: {final_response}\n")
What's happening:
  • We initialize an empty conversation_history list to maintain context across interactions
  • A while loop continuously accepts user input from the command line
  • When a user types a message, it's added to the conversation history and sent to the agent
  • The agent processes the request using the ainvoke() method with the full conversation history
  • Users can type 'exit', 'quit', or 'bye' to end the chat session gracefully

Run the application

if __name__ == "__main__":
    asyncio.run(main())
What's happening:
  • We call the main() function using asyncio.run() to start the application

Complete Code

Here's the complete code to get you started with D2lbrightspace and LangChain:

from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain.agents import create_agent
from dotenv import load_dotenv
from composio import Composio
import asyncio
import os

load_dotenv()

async def main():
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
    
    if not os.getenv("COMPOSIO_API_KEY"):
        raise ValueError("COMPOSIO_API_KEY is not set")
    if not os.getenv("COMPOSIO_USER_ID"):
        raise ValueError("COMPOSIO_USER_ID is not set")
    
    session = composio.create(
        user_id=os.getenv("COMPOSIO_USER_ID"),
        toolkits=['d2lbrightspace']
    )

    url = session.mcp.url
    
    client = MultiServerMCPClient({
        "d2lbrightspace-agent": {
            "transport": "streamable_http",
            "url": url,
            "headers": {
                "x-api-key": os.getenv("COMPOSIO_API_KEY")
            }
        }
    })
    
    tools = await client.get_tools()
  
    agent = create_agent("gpt-5", tools)
    
    conversation_history = []
    
    print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
    print("Ask any D2lbrightspace related question or task to the agent.\n")
    
    while True:
        user_input = input("You: ").strip()
        
        if user_input.lower() in ['exit', 'quit', 'bye']:
            print("\nGoodbye!")
            break
        
        if not user_input:
            continue
        
        conversation_history.append({"role": "user", "content": user_input})
        print("\nAgent is thinking...\n")
        
        response = await agent.ainvoke({"messages": conversation_history})
        conversation_history = response['messages']
        final_response = response['messages'][-1].content
        print(f"Agent: {final_response}\n")

if __name__ == "__main__":
    asyncio.run(main())

Conclusion

You've successfully built a LangChain agent that can interact with D2lbrightspace through Composio's Tool Router.

Key features of this implementation:

  • Dynamic tool loading through Composio's Tool Router
  • Conversation history maintenance for context-aware responses
  • Async Python provides clean, efficient execution of agent workflows
You can extend this further by adding error handling, implementing specific business logic, or integrating additional Composio toolkits to create multi-app workflows.

How to build D2lbrightspace MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and D2lbrightspace MCP?

With a standalone D2lbrightspace MCP server, the agents and LLMs can only access a fixed set of D2lbrightspace tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from D2lbrightspace and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with LangChain?

Yes, you can. LangChain fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right D2lbrightspace tools.

Can I manage the permissions and scopes for D2lbrightspace while using Tool Router?

Yes, absolutely. You can configure which D2lbrightspace scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your D2lbrightspace data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.