How to integrate Crustdata MCP with CrewAI

Framework Integration Gradient
Crustdata Logo
CrewAI Logo
divider

Introduction

This guide walks you through connecting Crustdata to CrewAI using the Composio tool router. By the end, you'll have a working Crustdata agent that can find tech companies with recent funding milestones, enrich this lead's profile with latest data, list top decision makers in saas startups, fetch job listings for fortune 500 companies through natural language commands.

This guide will help you understand how to give your CrewAI agent real control over a Crustdata account through Composio's Crustdata MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get a Composio API key and configure your Crustdata connection
  • Set up CrewAI with an MCP enabled agent
  • Create a Tool Router session or standalone MCP server for Crustdata
  • Build a conversational loop where your agent can execute Crustdata operations

What is CrewAI?

CrewAI is a powerful framework for building multi-agent AI systems. It provides primitives for defining agents with specific roles, creating tasks, and orchestrating workflows through crews.

Key features include:

  • Agent Roles: Define specialized agents with specific goals and backstories
  • Task Management: Create tasks with clear descriptions and expected outputs
  • Crew Orchestration: Combine agents and tasks into collaborative workflows
  • MCP Integration: Connect to external tools through Model Context Protocol

What is the Crustdata MCP server, and what's possible with it?

The Crustdata MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Crustdata account. It provides structured and secure access to real-time company and people intelligence, so your agent can perform actions like lead enrichment, market research, investor portfolio analysis, and workforce trend tracking on your behalf.

  • Comprehensive person and company enrichment: Instantly enrich leads or companies with up-to-date details for customer profiling, data verification, or targeted outreach.
  • Advanced decision maker filtering: Find and analyze decision makers across organizations using complex filters, titles, and segmentation for your sales or marketing efforts.
  • Investor portfolio and funding milestone analysis: Retrieve in-depth investor portfolio data, analyze funding milestones, and generate reports for investment research or deal sourcing.
  • Workforce and job market trend insights: Fetch headcount and job listing timeseries data to track organizational growth, hiring activity, or competitive shifts in specific industries.
  • Social and web activity monitoring: Collect and analyze LinkedIn posts and web traffic data for any company to assess engagement, sentiment, and digital footprint for market intelligence and outreach strategies.

Supported Tools & Triggers

Tools
Enrich person screenerThe screener person enrich endpoint enriches person data by providing additional information based on the given query.
Fetch headcount by facet timeseriesRetrieves headcount data as a timeseries with faceted analysis capabilities.
Fetch investor portfolio dataRetrieves comprehensive investor portfolio data from the data lab section of the crustdata api.
Filter decision makers dataFilters and retrieves decision maker data from the crustdata b2b saas integration platform based on complex criteria.
Post funding milestone timeseries dataThe fundingmilestonetimeseries endpoint retrieves time-series data related to funding milestones for companies.
Post headcount timeseries dataRetrieves filtered and sorted headcount timeseries data from the crustdata data lab.
Post job listings table dataThis endpoint retrieves filtered and sorted job listings data for specified company tickers from a chosen dataset in the crustdata platform.
Post web traffic dataRetrieves filtered and sorted web traffic data from the crustdata platform.
Retrieve linkedin postsRetrieves linkedin posts for a specified company using crustdata's screener functionality.
Screener company informationThe getcompanyscreener endpoint allows users to search and filter companies based on various criteria such as headcount, growth rate, funding, and more.
Screen metrics and filter conditionsThe screendata endpoint enables advanced data screening and filtering on the crustdata platform.
Search companies with filtersThe companysearch endpoint enables users to search and filter companies using the crustdata api.
Search for job id in screenerThe screener person search endpoint allows users to search for persons associated with a specific job id within the crustdata b2b saas integration platform.
Search linkedin posts by keywordThis endpoint enables searching for linkedin posts using a specific keyword.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Python 3.9 or higher
  • A Composio account and API key
  • A Crustdata connection authorized in Composio
  • An OpenAI API key for the CrewAI LLM
  • Basic familiarity with Python

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

bash
pip install composio crewai crewai-tools python-dotenv
What's happening:
  • composio connects your agent to Crustdata via MCP
  • crewai provides Agent, Task, Crew, and LLM primitives
  • crewai-tools includes MCP helpers
  • python-dotenv loads environment variables from .env

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
USER_ID=your_user_id_here
OPENAI_API_KEY=your_openai_api_key_here

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates with Composio
  • USER_ID scopes the session to your account
  • OPENAI_API_KEY lets CrewAI use your chosen OpenAI model

Import dependencies

python
from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter  # optional import if you plan to adapt tools
from composio import Composio
from dotenv import load_dotenv
import os
from crewai.mcp import MCPServerHTTP

load_dotenv()
What's happening:
  • CrewAI classes define agents and tasks, and run the workflow
  • MCPServerHTTP connects the agent to an MCP endpoint
  • Composio will give you a short lived Crustdata MCP URL

Create a Composio Tool Router session for Crustdata

python
composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
session = composio.create(
    user_id=os.getenv("USER_ID"),
    toolkits=["crustdata"],
)
url = session.mcp.url
What's happening:
  • You create a Crustdata only session through Composio
  • Composio returns an MCP HTTP URL that exposes Crustdata tools

Configure the LLM

python
llm = LLM(
    model="gpt-5-mini",
    api_key=os.getenv("OPENAI_API_KEY"),
)
What's happening:
  • CrewAI will call this LLM for planning and responses
  • You can swap in a different model if needed

Attach the MCP server and create the agent

python
toolkit_agent = Agent(
    role="Crustdata Assistant",
    goal="Help users interact with Crustdata through natural language commands",
    backstory=(
        "You are an expert assistant with access to Crustdata tools. "
        "You can perform various Crustdata operations on behalf of the user."
    ),
    mcps=[
        MCPServerHTTP(
            url=url,
            streamable=True,
            cache_tools_list=True,
            headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")},
        ),
    ],
    llm=llm,
    verbose=True,
    max_iter=10,
)
What's happening:
  • MCPServerHTTP connects the agent to the Crustdata MCP endpoint
  • cache_tools_list saves a tools catalog for faster subsequent runs
  • verbose helps you see what the agent is doing

Add a REPL loop with Task and Crew

python
print("Chat started! Type 'exit' or 'quit' to end.\n")
print("Try asking the agent to perform Crustdata operations.\n")

conversation_context = ""

while True:
    user_input = input("You: ").strip()

    if user_input.lower() in ["exit", "quit", "bye"]:
        print("\nGoodbye!")
        break

    if not user_input:
        continue

    conversation_context += f"\nUser: {user_input}\n"
    print("\nAgent is thinking...\n")

    task = Task(
        description=(
            f"Based on the conversation history:\n{conversation_context}\n\n"
            f"Current user request: {user_input}\n\n"
            f"Please help the user with their Crustdata related request."
        ),
        expected_output="A helpful response addressing the user's request",
        agent=toolkit_agent,
    )

    crew = Crew(
        agents=[toolkit_agent],
        tasks=[task],
        verbose=False,
    )

    result = crew.kickoff()
    response = str(result)

    conversation_context += f"Agent: {response}\n"
    print(f"Agent: {response}\n")
What's happening:
  • You build a simple chat loop and keep a running context
  • Each user turn becomes a Task handled by the same agent
  • Crew executes the task and returns a response

Run the application

python
if __name__ == "__main__":
    main()
What's happening:
  • Standard Python entry point so you can run python crewai_crustdata_agent.py

Complete Code

Here's the complete code to get you started with Crustdata and CrewAI:

python
# file: crewai_crustdata_agent.py
from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter  # optional
from composio import Composio
from dotenv import load_dotenv
import os
from crewai.mcp import MCPServerHTTP

load_dotenv()

def main():
    # Initialize Composio and create a Crustdata session
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
    session = composio.create(
        user_id=os.getenv("USER_ID"),
        toolkits=["crustdata"],
    )
    url = session.mcp.url

    # Configure LLM
    llm = LLM(
        model="gpt-5-mini",
        api_key=os.getenv("OPENAI_API_KEY"),
    )

    # Create Crustdata assistant agent
    toolkit_agent = Agent(
        role="Crustdata Assistant",
        goal="Help users interact with Crustdata through natural language commands",
        backstory=(
            "You are an expert assistant with access to Crustdata tools. "
            "You can perform various Crustdata operations on behalf of the user."
        ),
        mcps=[
            MCPServerHTTP(
                url=url,
                streamable=True,
                cache_tools_list=True,
                headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")},
            ),
        ],
        llm=llm,
        verbose=True,
        max_iter=10,
    )

    print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
    print("Try asking the agent to perform Crustdata operations.\n")

    conversation_context = ""

    while True:
        user_input = input("You: ").strip()

        if user_input.lower() in ["exit", "quit", "bye"]:
            print("\nGoodbye!")
            break

        if not user_input:
            continue

        conversation_context += f"\nUser: {user_input}\n"
        print("\nAgent is thinking...\n")

        task = Task(
            description=(
                f"Based on the conversation history:\n{conversation_context}\n\n"
                f"Current user request: {user_input}\n\n"
                f"Please help the user with their Crustdata related request."
            ),
            expected_output="A helpful response addressing the user's request",
            agent=toolkit_agent,
        )

        crew = Crew(
            agents=[toolkit_agent],
            tasks=[task],
            verbose=False,
        )

        result = crew.kickoff()
        response = str(result)

        conversation_context += f"Agent: {response}\n"
        print(f"Agent: {response}\n")

if __name__ == "__main__":
    main()

Conclusion

You now have a CrewAI agent connected to Crustdata through Composio's Tool Router. The agent can perform Crustdata operations through natural language commands. Next steps:
  • Add role-specific instructions to customize agent behavior
  • Plug in more toolkits for multi-app workflows
  • Chain tasks for complex multi-step operations

How to build Crustdata MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Crustdata MCP?

With a standalone Crustdata MCP server, the agents and LLMs can only access a fixed set of Crustdata tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Crustdata and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with CrewAI?

Yes, you can. CrewAI fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Crustdata tools.

Can I manage the permissions and scopes for Crustdata while using Tool Router?

Yes, absolutely. You can configure which Crustdata scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Crustdata data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.