How to integrate Countdown api MCP with CrewAI

Framework Integration Gradient
Countdown api Logo
CrewAI Logo
divider

Introduction

This guide walks you through connecting Countdown api to CrewAI using the Composio tool router. By the end, you'll have a working Countdown api agent that can list all my ebay data collections, start processing requests for a collection, get autocomplete suggestions for 'wireless earbuds', delete a finished collection by its id through natural language commands.

This guide will help you understand how to give your CrewAI agent real control over a Countdown api account through Composio's Countdown api MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get a Composio API key and configure your Countdown api connection
  • Set up CrewAI with an MCP enabled agent
  • Create a Tool Router session or standalone MCP server for Countdown api
  • Build a conversational loop where your agent can execute Countdown api operations

What is CrewAI?

CrewAI is a powerful framework for building multi-agent AI systems. It provides primitives for defining agents with specific roles, creating tasks, and orchestrating workflows through crews.

Key features include:

  • Agent Roles: Define specialized agents with specific goals and backstories
  • Task Management: Create tasks with clear descriptions and expected outputs
  • Crew Orchestration: Combine agents and tasks into collaborative workflows
  • MCP Integration: Connect to external tools through Model Context Protocol

What is the Countdown api MCP server, and what's possible with it?

The Countdown api MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Countdown api account. It provides structured and secure access to real-time eBay marketplace data, so your agent can perform actions like searching eBay products, managing collections, retrieving seller feedback, and automating product data workflows on your behalf.

  • eBay product search and autocomplete: Instantly fetch eBay autocomplete suggestions and help agents surface relevant product search terms and ideas in real time.
  • Collection management and orchestration: Create, update, list, or delete collections to batch and organize multiple eBay data requests for streamlined marketplace analysis.
  • Automated collection processing: Start or clear queued requests within a collection, making it easy to control and automate data gathering operations from eBay.
  • Destination setup and notifications: Set up or remove destinations for results and notifications, ensuring your agent can manage where and how you receive processed eBay data.
  • Access to rich eBay metadata: Retrieve detailed collection information, product details, customer reviews, and seller feedback to power analytics and business decisions.

Supported Tools & Triggers

Tools
Clear Collection RequestsTool to clear all requests from a specified collection.
Create a new collectionTool to create a new collection.
Get CollectionTool to retrieve details for a single collection by ID.
List CollectionsTool to list all collections for the authenticated account.
Start CollectionTool to start processing a collection's queued requests.
Update an existing collectionTool to update an existing collection.
eBay AutocompleteTool to fetch eBay autocomplete suggestions.
Create DestinationTool to create a destination.
Delete CollectionTool to delete a collection and its configuration by ID.
Delete DestinationTool to delete a destination by ID.
Delete Single RequestTool to remove a specific request from a collection.
List DestinationsTool to list all destinations configured for the account.
Get Account InformationTool to retrieve account usage and current platform status.
Export Requests CSVTool to export all requests in a collection as CSV download links.
Export Requests as JSONTool to download all requests in a collection as JSON.
List Requests PagedTool to list requests for a collection by page.
Update Single RequestTool to modify parameters of an existing request in a collection.
Get Result SetTool to retrieve a collection run's result set payload.
List Result SetsTool to list result sets produced by a collection.
Resend Result Set WebhookTool to resend the webhook for a previously generated result set.
Stop All CollectionsTool to stop all collections.
Stop CollectionTool to stop (pause) a single collection’s processing by ID.
Update DestinationTool to update a destination's configuration by ID.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Python 3.9 or higher
  • A Composio account and API key
  • A Countdown api connection authorized in Composio
  • An OpenAI API key for the CrewAI LLM
  • Basic familiarity with Python

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

bash
pip install composio crewai crewai-tools python-dotenv
What's happening:
  • composio connects your agent to Countdown api via MCP
  • crewai provides Agent, Task, Crew, and LLM primitives
  • crewai-tools includes MCP helpers
  • python-dotenv loads environment variables from .env

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
USER_ID=your_user_id_here
OPENAI_API_KEY=your_openai_api_key_here

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates with Composio
  • USER_ID scopes the session to your account
  • OPENAI_API_KEY lets CrewAI use your chosen OpenAI model

Import dependencies

python
from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter  # optional import if you plan to adapt tools
from composio import Composio
from dotenv import load_dotenv
import os
from crewai.mcp import MCPServerHTTP

load_dotenv()
What's happening:
  • CrewAI classes define agents and tasks, and run the workflow
  • MCPServerHTTP connects the agent to an MCP endpoint
  • Composio will give you a short lived Countdown api MCP URL

Create a Composio Tool Router session for Countdown api

python
composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
session = composio.create(
    user_id=os.getenv("USER_ID"),
    toolkits=["countdown_api"],
)
url = session.mcp.url
What's happening:
  • You create a Countdown api only session through Composio
  • Composio returns an MCP HTTP URL that exposes Countdown api tools

Configure the LLM

python
llm = LLM(
    model="gpt-5-mini",
    api_key=os.getenv("OPENAI_API_KEY"),
)
What's happening:
  • CrewAI will call this LLM for planning and responses
  • You can swap in a different model if needed

Attach the MCP server and create the agent

python
toolkit_agent = Agent(
    role="Countdown api Assistant",
    goal="Help users interact with Countdown api through natural language commands",
    backstory=(
        "You are an expert assistant with access to Countdown api tools. "
        "You can perform various Countdown api operations on behalf of the user."
    ),
    mcps=[
        MCPServerHTTP(
            url=url,
            streamable=True,
            cache_tools_list=True,
            headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")},
        ),
    ],
    llm=llm,
    verbose=True,
    max_iter=10,
)
What's happening:
  • MCPServerHTTP connects the agent to the Countdown api MCP endpoint
  • cache_tools_list saves a tools catalog for faster subsequent runs
  • verbose helps you see what the agent is doing

Add a REPL loop with Task and Crew

python
print("Chat started! Type 'exit' or 'quit' to end.\n")
print("Try asking the agent to perform Countdown api operations.\n")

conversation_context = ""

while True:
    user_input = input("You: ").strip()

    if user_input.lower() in ["exit", "quit", "bye"]:
        print("\nGoodbye!")
        break

    if not user_input:
        continue

    conversation_context += f"\nUser: {user_input}\n"
    print("\nAgent is thinking...\n")

    task = Task(
        description=(
            f"Based on the conversation history:\n{conversation_context}\n\n"
            f"Current user request: {user_input}\n\n"
            f"Please help the user with their Countdown api related request."
        ),
        expected_output="A helpful response addressing the user's request",
        agent=toolkit_agent,
    )

    crew = Crew(
        agents=[toolkit_agent],
        tasks=[task],
        verbose=False,
    )

    result = crew.kickoff()
    response = str(result)

    conversation_context += f"Agent: {response}\n"
    print(f"Agent: {response}\n")
What's happening:
  • You build a simple chat loop and keep a running context
  • Each user turn becomes a Task handled by the same agent
  • Crew executes the task and returns a response

Run the application

python
if __name__ == "__main__":
    main()
What's happening:
  • Standard Python entry point so you can run python crewai_countdown_api_agent.py

Complete Code

Here's the complete code to get you started with Countdown api and CrewAI:

python
# file: crewai_countdown_api_agent.py
from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter  # optional
from composio import Composio
from dotenv import load_dotenv
import os
from crewai.mcp import MCPServerHTTP

load_dotenv()

def main():
    # Initialize Composio and create a Countdown api session
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
    session = composio.create(
        user_id=os.getenv("USER_ID"),
        toolkits=["countdown_api"],
    )
    url = session.mcp.url

    # Configure LLM
    llm = LLM(
        model="gpt-5-mini",
        api_key=os.getenv("OPENAI_API_KEY"),
    )

    # Create Countdown api assistant agent
    toolkit_agent = Agent(
        role="Countdown api Assistant",
        goal="Help users interact with Countdown api through natural language commands",
        backstory=(
            "You are an expert assistant with access to Countdown api tools. "
            "You can perform various Countdown api operations on behalf of the user."
        ),
        mcps=[
            MCPServerHTTP(
                url=url,
                streamable=True,
                cache_tools_list=True,
                headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")},
            ),
        ],
        llm=llm,
        verbose=True,
        max_iter=10,
    )

    print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
    print("Try asking the agent to perform Countdown api operations.\n")

    conversation_context = ""

    while True:
        user_input = input("You: ").strip()

        if user_input.lower() in ["exit", "quit", "bye"]:
            print("\nGoodbye!")
            break

        if not user_input:
            continue

        conversation_context += f"\nUser: {user_input}\n"
        print("\nAgent is thinking...\n")

        task = Task(
            description=(
                f"Based on the conversation history:\n{conversation_context}\n\n"
                f"Current user request: {user_input}\n\n"
                f"Please help the user with their Countdown api related request."
            ),
            expected_output="A helpful response addressing the user's request",
            agent=toolkit_agent,
        )

        crew = Crew(
            agents=[toolkit_agent],
            tasks=[task],
            verbose=False,
        )

        result = crew.kickoff()
        response = str(result)

        conversation_context += f"Agent: {response}\n"
        print(f"Agent: {response}\n")

if __name__ == "__main__":
    main()

Conclusion

You now have a CrewAI agent connected to Countdown api through Composio's Tool Router. The agent can perform Countdown api operations through natural language commands. Next steps:
  • Add role-specific instructions to customize agent behavior
  • Plug in more toolkits for multi-app workflows
  • Chain tasks for complex multi-step operations

How to build Countdown api MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Countdown api MCP?

With a standalone Countdown api MCP server, the agents and LLMs can only access a fixed set of Countdown api tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Countdown api and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with CrewAI?

Yes, you can. CrewAI fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Countdown api tools.

Can I manage the permissions and scopes for Countdown api while using Tool Router?

Yes, absolutely. You can configure which Countdown api scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Countdown api data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.