How to integrate Composio MCP with Pydantic AI

Framework Integration Gradient
Composio Logo
Pydantic AI Logo
divider

Introduction

This guide walks you through connecting Composio to Pydantic AI using the Composio tool router. By the end, you'll have a working Composio agent that can generate a step-by-step workflow plan, check active connections for all toolkits, download public s3 file to local path, show tool dependencies for workflow setup through natural language commands.

This guide will help you understand how to give your Pydantic AI agent real control over a Composio account through Composio's Composio MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • How to set up your Composio API key and User ID
  • How to create a Composio Tool Router session for Composio
  • How to attach an MCP Server to a Pydantic AI agent
  • How to stream responses and maintain chat history
  • How to build a simple REPL-style chat interface to test your Composio workflows

What is Pydantic AI?

Pydantic AI is a Python framework for building AI agents with strong typing and validation. It leverages Pydantic's data validation capabilities to create robust, type-safe AI applications.

Key features include:

  • Type Safety: Built on Pydantic for automatic data validation
  • MCP Support: Native support for Model Context Protocol servers
  • Streaming: Built-in support for streaming responses
  • Async First: Designed for async/await patterns

What is the Composio MCP server, and what's possible with it?

The Composio MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Composio account. It provides structured and secure access to your connected tools, so your agent can plan workflows, orchestrate complex actions, manage integrations, and execute cross-tool automations on your behalf.

  • Automated workflow planning and execution: The agent can generate and run step-by-step plans for complex, multi-tool use cases—ensuring tasks are completed reliably, even when they span multiple services.
  • Connection management and discovery: Effortlessly check the status of multiple toolkit connections, discover what integrations are active, and manage how your agent connects to different services.
  • Tool and dependency exploration: Ask your agent to map out tool dependencies, discover related tools, and understand which tools work best together for your workflow.
  • Direct code and command execution: Let the agent run code snippets or shell commands in supported environments, tying together automation across your stack.
  • Bulk and parallel operations: Use specialized tools for parallel execution or to handle many similar tasks at once—speeding up large automations by making multiple calls in a single workflow.

Supported Tools & Triggers

Tools
Ask OracleStatic helper that returns a comprehensive system prompt describing how to plan and execute tasks using the available composio tools and workflows.
Check active connection (deprecated)Deprecated: use check active connections instead for bulk operations.
Check multiple active connectionsCheck active connection status for multiple toolkits or specific connected account ids.
Create PlanThis is a workflow builder that ensures the LLM produces a complete, step-by-step plan for any use case.
Download S3 FileDownload a file from a public s3 (or r2) url to a local path.
Enable triggerEnable a specific trigger for the authenticated user.
Execute agentExecute complex workflows using ai agent reasoning between multiple tool calls.
Execute Composio ToolExecute a tool using the composio api.
Get Tool Dependency GraphGet the dependency graph for a given tool, showing related parent tools that might be useful.
Get required parameters for connectionGets the required parameters for connecting to a toolkit via initiate connection.
Get response schemaRetrieves the response schema for a specified composio tool.
Initiate connectionInitiate a connection to a toolkit with comprehensive authentication support.
List toolkitsList all the available toolkits on composio with filtering options.
List triggersList available triggers and their configuration schemas.
Manage connectionManage a connection to a toolkit with comprehensive authentication support.
Manage connectionsCreate or manage connections to user's apps.
Multi Execute Composio ToolsFast and parallel tool executor for tools discovered through COMPOSIO_SEARCH_TOOLS.
Run bash commandsExecute bash commands in a REMOTE sandbox for file operations, data processing, and system tasks.
Execute Code remotely in work benchProcess REMOTE FILES or script BULK TOOL EXECUTIONS using Python code IN A REMOTE SANDBOX.
Retrieve ToolkitsToolkits are like github, linear, gmail, etc.
Search agentDiscover tools and analyze dependencies for complex workflows using ai agent.
Search Composio ToolsMCP Server Info: COMPOSIO MCP connects 500+ apps—Slack, GitHub, Notion, Google Workspace (Gmail, Sheets, Drive, Calendar), Microsoft (Outlook, Teams), X, Figma, Web Search, Meta apps (WhatsApp, Instagram), TikTok, AI tools like Nano Banana & Veo3, and more—for seamless cross-app automation.
Wait for connectionWait for the user to complete authentication AFTER you have given them an auth URL from COMPOSIO_MANAGE_CONNECTIONS.
Create / Update Recipe from WorkflowConvert the executed workflow into a notebook.
Execute RecipeExecutes a Recipe
Create / Update Skill from WorkflowConvert the executed workflow into a skill using Python Pydantic code.
Get Existing Recipe DetailsGet the details of the existing recipe for a given recipe id.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Python 3.9 or higher
  • A Composio account with an active API key
  • Basic familiarity with Python and async programming

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

bash
pip install composio pydantic-ai python-dotenv

Install the required libraries.

What's happening:

  • composio connects your agent to external SaaS tools like Composio
  • pydantic-ai lets you create structured AI agents with tool support
  • python-dotenv loads your environment variables securely from a .env file

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
USER_ID=your_user_id_here
OPENAI_API_KEY=your_openai_api_key

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates your agent to Composio's API
  • USER_ID associates your session with your account for secure tool access
  • OPENAI_API_KEY to access OpenAI LLMs

Import dependencies

python
import asyncio
import os
from dotenv import load_dotenv
from composio import Composio
from pydantic_ai import Agent
from pydantic_ai.mcp import MCPServerStreamableHTTP

load_dotenv()
What's happening:
  • We load environment variables and import required modules
  • Composio manages connections to Composio
  • MCPServerStreamableHTTP connects to the Composio MCP server endpoint
  • Agent from Pydantic AI lets you define and run the AI assistant

Create a Tool Router Session

python
async def main():
    api_key = os.getenv("COMPOSIO_API_KEY")
    user_id = os.getenv("USER_ID")
    if not api_key or not user_id:
        raise RuntimeError("Set COMPOSIO_API_KEY and USER_ID in your environment")

    # Create a Composio Tool Router session for Composio
    composio = Composio(api_key=api_key)
    session = composio.create(
        user_id=user_id,
        toolkits=["composio"],
    )
    url = session.mcp.url
    if not url:
        raise ValueError("Composio session did not return an MCP URL")
What's happening:
  • We're creating a Tool Router session that gives your agent access to Composio tools
  • The create method takes the user ID and specifies which toolkits should be available
  • The returned session.mcp.url is the MCP server URL that your agent will use

Initialize the Pydantic AI Agent

python
# Attach the MCP server to a Pydantic AI Agent
composio_mcp = MCPServerStreamableHTTP(url, headers={"x-api-key": COMPOSIO_API_KEY})
agent = Agent(
    "openai:gpt-5",
    toolsets=[composio_mcp],
    instructions=(
        "You are a Composio assistant. Use Composio tools to help users "
        "with their requests. Ask clarifying questions when needed."
    ),
)
What's happening:
  • The MCP client connects to the Composio endpoint
  • The agent uses GPT-5 to interpret user commands and perform Composio operations
  • The instructions field defines the agent's role and behavior

Build the chat interface

python
# Simple REPL with message history
history = []
print("Chat started! Type 'exit' or 'quit' to end.\n")
print("Try asking the agent to help you with Composio.\n")

while True:
    user_input = input("You: ").strip()
    if user_input.lower() in {"exit", "quit", "bye"}:
        print("\nGoodbye!")
        break
    if not user_input:
        continue

    print("\nAgent is thinking...\n", flush=True)

    async with agent.run_stream(user_input, message_history=history) as stream_result:
        collected_text = ""
        async for chunk in stream_result.stream_output():
            text_piece = None
            if isinstance(chunk, str):
                text_piece = chunk
            elif hasattr(chunk, "delta") and isinstance(chunk.delta, str):
                text_piece = chunk.delta
            elif hasattr(chunk, "text"):
                text_piece = chunk.text
            if text_piece:
                collected_text += text_piece
        result = stream_result

    print(f"Agent: {collected_text}\n")
    history = result.all_messages()
What's happening:
  • The agent reads input from the terminal and streams its response
  • Composio API calls happen automatically under the hood
  • The model keeps conversation history to maintain context across turns

Run the application

python
if __name__ == "__main__":
    asyncio.run(main())
What's happening:
  • The asyncio loop launches the agent and keeps it running until you exit

Complete Code

Here's the complete code to get you started with Composio and Pydantic AI:

python
import asyncio
import os
from dotenv import load_dotenv
from composio import Composio
from pydantic_ai import Agent
from pydantic_ai.mcp import MCPServerStreamableHTTP

load_dotenv()

async def main():
    api_key = os.getenv("COMPOSIO_API_KEY")
    user_id = os.getenv("USER_ID")
    if not api_key or not user_id:
        raise RuntimeError("Set COMPOSIO_API_KEY and USER_ID in your environment")

    # Create a Composio Tool Router session for Composio
    composio = Composio(api_key=api_key)
    session = composio.create(
        user_id=user_id,
        toolkits=["composio"],
    )
    url = session.mcp.url
    if not url:
        raise ValueError("Composio session did not return an MCP URL")

    # Attach the MCP server to a Pydantic AI Agent
    composio_mcp = MCPServerStreamableHTTP(url, headers={"x-api-key": COMPOSIO_API_KEY})
    agent = Agent(
        "openai:gpt-5",
        toolsets=[composio_mcp],
        instructions=(
            "You are a Composio assistant. Use Composio tools to help users "
            "with their requests. Ask clarifying questions when needed."
        ),
    )

    # Simple REPL with message history
    history = []
    print("Chat started! Type 'exit' or 'quit' to end.\n")
    print("Try asking the agent to help you with Composio.\n")

    while True:
        user_input = input("You: ").strip()
        if user_input.lower() in {"exit", "quit", "bye"}:
            print("\nGoodbye!")
            break
        if not user_input:
            continue

        print("\nAgent is thinking...\n", flush=True)

        async with agent.run_stream(user_input, message_history=history) as stream_result:
            collected_text = ""
            async for chunk in stream_result.stream_output():
                text_piece = None
                if isinstance(chunk, str):
                    text_piece = chunk
                elif hasattr(chunk, "delta") and isinstance(chunk.delta, str):
                    text_piece = chunk.delta
                elif hasattr(chunk, "text"):
                    text_piece = chunk.text
                if text_piece:
                    collected_text += text_piece
            result = stream_result

        print(f"Agent: {collected_text}\n")
        history = result.all_messages()

if __name__ == "__main__":
    asyncio.run(main())

Conclusion

You've built a Pydantic AI agent that can interact with Composio through Composio's Tool Router. With this setup, your agent can perform real Composio actions through natural language. You can extend this further by:
  • Adding other toolkits like Gmail, HubSpot, or Salesforce
  • Building a web-based chat interface around this agent
  • Using multiple MCP endpoints to enable cross-app workflows (for example, Gmail + Composio for workflow automation)
This architecture makes your AI agent "agent-native", able to securely use APIs in a unified, composable way without custom integrations.

How to build Composio MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Composio MCP?

With a standalone Composio MCP server, the agents and LLMs can only access a fixed set of Composio tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Composio and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with Pydantic AI?

Yes, you can. Pydantic AI fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Composio tools.

Can I manage the permissions and scopes for Composio while using Tool Router?

Yes, absolutely. You can configure which Composio scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Composio data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.