How to integrate Clearout MCP with LangChain

Framework Integration Gradient
Clearout Logo
LangChain Logo
divider

Introduction

This guide walks you through connecting Clearout to LangChain using the Composio tool router. By the end, you'll have a working Clearout agent that can validate a list of emails for deliverability, check if this email is a business account, find the most likely domain for acme corp, download results from my last bulk email finder job through natural language commands.

This guide will help you understand how to give your LangChain agent real control over a Clearout account through Composio's Clearout MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get and set up your OpenAI and Composio API keys
  • Connect your Clearout project to Composio
  • Create a Tool Router MCP session for Clearout
  • Initialize an MCP client and retrieve Clearout tools
  • Build a LangChain agent that can interact with Clearout
  • Set up an interactive chat interface for testing

What is LangChain?

LangChain is a framework for developing applications powered by language models. It provides tools and abstractions for building agents that can reason, use tools, and maintain conversation context.

Key features include:

  • Agent Framework: Build agents that can use tools and make decisions
  • MCP Integration: Connect to external services through Model Context Protocol adapters
  • Memory Management: Maintain conversation history across interactions
  • Multi-Provider Support: Works with OpenAI, Anthropic, and other LLM providers

What is the Clearout MCP server, and what's possible with it?

The Clearout MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Clearout account. It provides structured and secure access to email validation, prospecting, and enrichment tools, so your agent can perform actions like verifying email addresses, finding business contacts, checking domain details, and bulk-processing lists on your behalf.

  • AI-powered email verification: Instantly validate single or bulk email addresses to ensure deliverability and reduce bounce rates.
  • Email prospecting and enrichment: Find emails for people or companies, complete missing contact data, and verify if accounts are business or personal.
  • Domain and company intelligence: Retrieve company domains from names, fetch MX records, or pull WHOIS information to understand your leads and their infrastructure.
  • Disposable and catch-all detection: Check if an email is temporary or if a domain accepts all mail, helping you maintain list quality and avoid spam traps.
  • Bulk job automation: Upload, process, monitor, cancel, and download results for large-scale email finding and verification tasks, all through your agent.

Supported Tools & Triggers

Tools
Autocomplete Company to DomainTool to autocomplete company names to probable domains with confidence scores.
Business Account VerifyTool to check if an email belongs to a business/work account.
Catch-All VerifyTool to check if an email domain is catch-all.
Verify Disposable EmailTool to check if an email is from a disposable provider.
Find Domain MX RecordsTool to retrieve MX records for a domain in priority order.
Fetch Domain WHOIS InformationTool to fetch WHOIS record for a domain.
Bulk Email FinderTool to upload a CSV or XLSX contacts file for bulk email finding.
Cancel Bulk Email Finder JobTool to cancel a running bulk email finder job.
Bulk Email Finder Result DownloadTool to generate a bulk email finder result download URL.
Bulk Email VerifyTool to upload a CSV or XLSX file for bulk email verification.
Cancel Bulk Email Verification JobTool to cancel a running bulk email verification job.
Bulk Email Verify Progress StatusTool to retrieve progress for a bulk email verification job.
Bulk Email Verify Result DownloadTool to obtain a temporary URL for bulk email verification results.
Email Verify Get CreditsTool to fetch available email verification credits.
Instant Email VerifierTool to instantly verify a single email address.
Verify Free Email AccountTool to detect if an email is from a free email service provider.
Verify Gibberish EmailTool to verify if an email address is gibberish.
Reverse Lookup Company by DomainTool to find company information by domain.
Reverse Lookup Person by EmailTool to retrieve a person’s profile from an email address.
Find Person via LinkedIn URLTool to discover person information via a LinkedIn profile URL.
Role Account VerifierTool to determine if an email is a role-based account.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting this tutorial, make sure you have:
  • Python 3.10 or higher installed on your system
  • A Composio account with an API key
  • An OpenAI API key
  • Basic familiarity with Python and async programming

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

pip install composio-langchain langchain-mcp-adapters langchain python-dotenv

Install the required packages for LangChain with MCP support.

What's happening:

  • composio-langchain provides Composio integration for LangChain
  • langchain-mcp-adapters enables MCP client connections
  • langchain is the core agent framework
  • python-dotenv loads environment variables

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
COMPOSIO_USER_ID=your_composio_user_id_here
OPENAI_API_KEY=your_openai_api_key_here

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates your requests to Composio's API
  • COMPOSIO_USER_ID identifies the user for session management
  • OPENAI_API_KEY enables access to OpenAI's language models

Import dependencies

from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain.agents import create_agent
from dotenv import load_dotenv
from composio import Composio
import asyncio
import os

load_dotenv()
What's happening:
  • We're importing LangChain's MCP adapter and Composio SDK
  • The dotenv import loads environment variables from your .env file
  • This setup prepares the foundation for connecting LangChain with Clearout functionality through MCP

Initialize Composio client

async def main():
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))

    if not os.getenv("COMPOSIO_API_KEY"):
        raise ValueError("COMPOSIO_API_KEY is not set")
    if not os.getenv("COMPOSIO_USER_ID"):
        raise ValueError("COMPOSIO_USER_ID is not set")
What's happening:
  • We're loading the COMPOSIO_API_KEY from environment variables and validating it exists
  • Creating a Composio instance that will manage our connection to Clearout tools
  • Validating that COMPOSIO_USER_ID is also set before proceeding

Create a Tool Router session

# Create Tool Router session for Clearout
session = composio.create(
    user_id=os.getenv("COMPOSIO_USER_ID"),
    toolkits=['clearout']
)

url = session.mcp.url
What's happening:
  • We're creating a Tool Router session that gives your agent access to Clearout tools
  • The create method takes the user ID and specifies which toolkits should be available
  • The returned session.mcp.url is the MCP server URL that your agent will use
  • This approach allows the agent to dynamically load and use Clearout tools as needed

Configure the agent with the MCP URL

client = MultiServerMCPClient({
    "clearout-agent": {
        "transport": "streamable_http",
        "url": session.mcp.url,
        "headers": {
            "x-api-key": os.getenv("COMPOSIO_API_KEY")
        }
    }
})

tools = await client.get_tools()

agent = create_agent("gpt-5", tools)
What's happening:
  • We're creating a MultiServerMCPClient that connects to our Clearout MCP server via HTTP
  • The client is configured with a name and the URL from our Tool Router session
  • get_tools() retrieves all available Clearout tools that the agent can use
  • We're creating a LangChain agent using the GPT-5 model

Set up interactive chat interface

conversation_history = []

print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
print("Ask any Clearout related question or task to the agent.\n")

while True:
    user_input = input("You: ").strip()

    if user_input.lower() in ['exit', 'quit', 'bye']:
        print("\nGoodbye!")
        break

    if not user_input:
        continue

    conversation_history.append({"role": "user", "content": user_input})
    print("\nAgent is thinking...\n")

    response = await agent.ainvoke({"messages": conversation_history})
    conversation_history = response['messages']
    final_response = response['messages'][-1].content
    print(f"Agent: {final_response}\n")
What's happening:
  • We initialize an empty conversation_history list to maintain context across interactions
  • A while loop continuously accepts user input from the command line
  • When a user types a message, it's added to the conversation history and sent to the agent
  • The agent processes the request using the ainvoke() method with the full conversation history
  • Users can type 'exit', 'quit', or 'bye' to end the chat session gracefully

Run the application

if __name__ == "__main__":
    asyncio.run(main())
What's happening:
  • We call the main() function using asyncio.run() to start the application

Complete Code

Here's the complete code to get you started with Clearout and LangChain:

from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain.agents import create_agent
from dotenv import load_dotenv
from composio import Composio
import asyncio
import os

load_dotenv()

async def main():
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
    
    if not os.getenv("COMPOSIO_API_KEY"):
        raise ValueError("COMPOSIO_API_KEY is not set")
    if not os.getenv("COMPOSIO_USER_ID"):
        raise ValueError("COMPOSIO_USER_ID is not set")
    
    session = composio.create(
        user_id=os.getenv("COMPOSIO_USER_ID"),
        toolkits=['clearout']
    )

    url = session.mcp.url
    
    client = MultiServerMCPClient({
        "clearout-agent": {
            "transport": "streamable_http",
            "url": url,
            "headers": {
                "x-api-key": os.getenv("COMPOSIO_API_KEY")
            }
        }
    })
    
    tools = await client.get_tools()
  
    agent = create_agent("gpt-5", tools)
    
    conversation_history = []
    
    print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
    print("Ask any Clearout related question or task to the agent.\n")
    
    while True:
        user_input = input("You: ").strip()
        
        if user_input.lower() in ['exit', 'quit', 'bye']:
            print("\nGoodbye!")
            break
        
        if not user_input:
            continue
        
        conversation_history.append({"role": "user", "content": user_input})
        print("\nAgent is thinking...\n")
        
        response = await agent.ainvoke({"messages": conversation_history})
        conversation_history = response['messages']
        final_response = response['messages'][-1].content
        print(f"Agent: {final_response}\n")

if __name__ == "__main__":
    asyncio.run(main())

Conclusion

You've successfully built a LangChain agent that can interact with Clearout through Composio's Tool Router.

Key features of this implementation:

  • Dynamic tool loading through Composio's Tool Router
  • Conversation history maintenance for context-aware responses
  • Async Python provides clean, efficient execution of agent workflows
You can extend this further by adding error handling, implementing specific business logic, or integrating additional Composio toolkits to create multi-app workflows.

How to build Clearout MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Clearout MCP?

With a standalone Clearout MCP server, the agents and LLMs can only access a fixed set of Clearout tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Clearout and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with LangChain?

Yes, you can. LangChain fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Clearout tools.

Can I manage the permissions and scopes for Clearout while using Tool Router?

Yes, absolutely. You can configure which Clearout scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Clearout data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.