How to integrate Claid ai MCP with CrewAI

Framework Integration Gradient
Claid ai Logo
CrewAI Logo
divider

Introduction

This guide walks you through connecting Claid ai to CrewAI using the Composio tool router. By the end, you'll have a working Claid ai agent that can remove background from all product images, generate lifestyle backgrounds for shoe photos, blur license plates in uploaded car images, batch upscale images in my s3 folder through natural language commands.

This guide will help you understand how to give your CrewAI agent real control over a Claid ai account through Composio's Claid ai MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get a Composio API key and configure your Claid ai connection
  • Set up CrewAI with an MCP enabled agent
  • Create a Tool Router session or standalone MCP server for Claid ai
  • Build a conversational loop where your agent can execute Claid ai operations

What is CrewAI?

CrewAI is a powerful framework for building multi-agent AI systems. It provides primitives for defining agents with specific roles, creating tasks, and orchestrating workflows through crews.

Key features include:

  • Agent Roles: Define specialized agents with specific goals and backstories
  • Task Management: Create tasks with clear descriptions and expected outputs
  • Crew Orchestration: Combine agents and tasks into collaborative workflows
  • MCP Integration: Connect to external tools through Model Context Protocol

What is the Claid ai MCP server, and what's possible with it?

The Claid ai MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Claid ai account. It provides structured and secure access to powerful AI image editing features, so your agent can perform actions like removing backgrounds, generating AI photoshoots, upscaling, and editing images in bulk on your behalf.

  • AI-powered background removal: Instantly have your agent isolate subjects from any image by removing backgrounds with a single command.
  • Automated product photoshoots: Let your agent transform plain product images into professional model photoshoots, complete with realistic AI-generated backgrounds.
  • Batch and async image editing: Direct your agent to process multiple images at once or submit complex, text-driven edits for asynchronous processing—perfect for large workflows.
  • Generative resizing and enhancement: Ask your agent to resize images using outpainting or upscale and enhance visuals to meet any platform’s requirements.
  • Privacy and compliance automation: Have your agent blur license plates in images or apply other privacy-preserving edits before sharing or publishing assets.

Supported Tools & Triggers

Tools
AI PhotoshootTool to transform product shots into model photoshoots.
Generate AI BackgroundsTool to generate AI backgrounds for a product image.
CLAID Background RemoveTool to remove the background from images.
Get Storage DetailsTool to retrieve details of a connected storage resource.
Connect New StorageTool to connect a storage resource.
Generative Resize ImageTool to adjust image aspect ratios via generative outpainting.
Image AI Edit AsyncTool to submit an asynchronous AI-based image editing task.
CLAID Image Edit BatchTool to process multiple images in batch.
Generate Images from TextTool to generate images from text prompts.
CLAID License Plate BlurTool to blur license plates in images to meet privacy requirements.
Update Connected StorageTool to update a connected storage's settings.
Polish ImageTool to remove AI artifacts via polish restoration.
CLAID Smart FrameTool to smart-frame images: resize and add free space around the subject.
List Connected StoragesTool to list connected storage resources.
List Storage TypesTool to retrieve available storage types.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Python 3.9 or higher
  • A Composio account and API key
  • A Claid ai connection authorized in Composio
  • An OpenAI API key for the CrewAI LLM
  • Basic familiarity with Python

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

bash
pip install composio crewai crewai-tools python-dotenv
What's happening:
  • composio connects your agent to Claid ai via MCP
  • crewai provides Agent, Task, Crew, and LLM primitives
  • crewai-tools includes MCP helpers
  • python-dotenv loads environment variables from .env

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
USER_ID=your_user_id_here
OPENAI_API_KEY=your_openai_api_key_here

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates with Composio
  • USER_ID scopes the session to your account
  • OPENAI_API_KEY lets CrewAI use your chosen OpenAI model

Import dependencies

python
from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter  # optional import if you plan to adapt tools
from composio import Composio
from dotenv import load_dotenv
import os
from crewai.mcp import MCPServerHTTP

load_dotenv()
What's happening:
  • CrewAI classes define agents and tasks, and run the workflow
  • MCPServerHTTP connects the agent to an MCP endpoint
  • Composio will give you a short lived Claid ai MCP URL

Create a Composio Tool Router session for Claid ai

python
composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
session = composio.create(
    user_id=os.getenv("USER_ID"),
    toolkits=["claid_ai"],
)
url = session.mcp.url
What's happening:
  • You create a Claid ai only session through Composio
  • Composio returns an MCP HTTP URL that exposes Claid ai tools

Configure the LLM

python
llm = LLM(
    model="gpt-5-mini",
    api_key=os.getenv("OPENAI_API_KEY"),
)
What's happening:
  • CrewAI will call this LLM for planning and responses
  • You can swap in a different model if needed

Attach the MCP server and create the agent

python
toolkit_agent = Agent(
    role="Claid ai Assistant",
    goal="Help users interact with Claid ai through natural language commands",
    backstory=(
        "You are an expert assistant with access to Claid ai tools. "
        "You can perform various Claid ai operations on behalf of the user."
    ),
    mcps=[
        MCPServerHTTP(
            url=url,
            streamable=True,
            cache_tools_list=True,
            headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")},
        ),
    ],
    llm=llm,
    verbose=True,
    max_iter=10,
)
What's happening:
  • MCPServerHTTP connects the agent to the Claid ai MCP endpoint
  • cache_tools_list saves a tools catalog for faster subsequent runs
  • verbose helps you see what the agent is doing

Add a REPL loop with Task and Crew

python
print("Chat started! Type 'exit' or 'quit' to end.\n")
print("Try asking the agent to perform Claid ai operations.\n")

conversation_context = ""

while True:
    user_input = input("You: ").strip()

    if user_input.lower() in ["exit", "quit", "bye"]:
        print("\nGoodbye!")
        break

    if not user_input:
        continue

    conversation_context += f"\nUser: {user_input}\n"
    print("\nAgent is thinking...\n")

    task = Task(
        description=(
            f"Based on the conversation history:\n{conversation_context}\n\n"
            f"Current user request: {user_input}\n\n"
            f"Please help the user with their Claid ai related request."
        ),
        expected_output="A helpful response addressing the user's request",
        agent=toolkit_agent,
    )

    crew = Crew(
        agents=[toolkit_agent],
        tasks=[task],
        verbose=False,
    )

    result = crew.kickoff()
    response = str(result)

    conversation_context += f"Agent: {response}\n"
    print(f"Agent: {response}\n")
What's happening:
  • You build a simple chat loop and keep a running context
  • Each user turn becomes a Task handled by the same agent
  • Crew executes the task and returns a response

Run the application

python
if __name__ == "__main__":
    main()
What's happening:
  • Standard Python entry point so you can run python crewai_claid_ai_agent.py

Complete Code

Here's the complete code to get you started with Claid ai and CrewAI:

python
# file: crewai_claid_ai_agent.py
from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter  # optional
from composio import Composio
from dotenv import load_dotenv
import os
from crewai.mcp import MCPServerHTTP

load_dotenv()

def main():
    # Initialize Composio and create a Claid ai session
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
    session = composio.create(
        user_id=os.getenv("USER_ID"),
        toolkits=["claid_ai"],
    )
    url = session.mcp.url

    # Configure LLM
    llm = LLM(
        model="gpt-5-mini",
        api_key=os.getenv("OPENAI_API_KEY"),
    )

    # Create Claid ai assistant agent
    toolkit_agent = Agent(
        role="Claid ai Assistant",
        goal="Help users interact with Claid ai through natural language commands",
        backstory=(
            "You are an expert assistant with access to Claid ai tools. "
            "You can perform various Claid ai operations on behalf of the user."
        ),
        mcps=[
            MCPServerHTTP(
                url=url,
                streamable=True,
                cache_tools_list=True,
                headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")},
            ),
        ],
        llm=llm,
        verbose=True,
        max_iter=10,
    )

    print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
    print("Try asking the agent to perform Claid ai operations.\n")

    conversation_context = ""

    while True:
        user_input = input("You: ").strip()

        if user_input.lower() in ["exit", "quit", "bye"]:
            print("\nGoodbye!")
            break

        if not user_input:
            continue

        conversation_context += f"\nUser: {user_input}\n"
        print("\nAgent is thinking...\n")

        task = Task(
            description=(
                f"Based on the conversation history:\n{conversation_context}\n\n"
                f"Current user request: {user_input}\n\n"
                f"Please help the user with their Claid ai related request."
            ),
            expected_output="A helpful response addressing the user's request",
            agent=toolkit_agent,
        )

        crew = Crew(
            agents=[toolkit_agent],
            tasks=[task],
            verbose=False,
        )

        result = crew.kickoff()
        response = str(result)

        conversation_context += f"Agent: {response}\n"
        print(f"Agent: {response}\n")

if __name__ == "__main__":
    main()

Conclusion

You now have a CrewAI agent connected to Claid ai through Composio's Tool Router. The agent can perform Claid ai operations through natural language commands. Next steps:
  • Add role-specific instructions to customize agent behavior
  • Plug in more toolkits for multi-app workflows
  • Chain tasks for complex multi-step operations

How to build Claid ai MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Claid ai MCP?

With a standalone Claid ai MCP server, the agents and LLMs can only access a fixed set of Claid ai tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Claid ai and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with CrewAI?

Yes, you can. CrewAI fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Claid ai tools.

Can I manage the permissions and scopes for Claid ai while using Tool Router?

Yes, absolutely. You can configure which Claid ai scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Claid ai data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.