How to integrate Canva MCP with Vercel AI SDK

Framework Integration Gradient
Canva Logo
Vercel AI SDK Logo
divider

Introduction

This guide walks you through connecting Canva to Vercel AI SDK using the Composio tool router. By the end, you'll have a working Canva agent that can create a new instagram post design, list my brand templates for social use, start a folder for this project’s assets, reply to comments on a shared design through natural language commands.

This guide will help you understand how to give your Vercel AI SDK agent real control over a Canva account through Composio's Canva MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • How to set up and configure a Vercel AI SDK agent with Canva integration
  • Using Composio's Tool Router to dynamically load and access Canva tools
  • Creating an MCP client connection using HTTP transport
  • Building an interactive CLI chat interface with conversation history management
  • Handling tool calls and results within the Vercel AI SDK framework

What is Vercel AI SDK?

The Vercel AI SDK is a TypeScript library for building AI-powered applications. It provides tools for creating agents that can use external services and maintain conversation state.

Key features include:

  • streamText: Core function for streaming responses with real-time tool support
  • MCP Client: Built-in support for Model Context Protocol
  • Step Counting: Control multi-step tool execution
  • OpenAI Provider: Native integration with OpenAI models

What is the Canva MCP server, and what's possible with it?

The Canva MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Canva account. It provides structured and secure access to your Canva designs, templates, folders, assets, and user details, so your agent can create designs, organize projects, manage assets, and collaborate on feedback for you.

  • Automated design creation and asset integration: Direct your agent to generate new Canva designs using templates or custom dimensions, and add assets from your projects automatically.
  • Seamless folder and project organization: Have the agent create user or subfolders to keep your Canva projects structured and easily accessible.
  • Asset management and cleanup: Let your agent fetch upload statuses, manage, or delete assets by ID, helping you keep your design library up to date.
  • Collaborative design feedback: Empower your agent to add comments or reply within designs, making it easy to facilitate feedback and teamwork directly in Canva.
  • User and team information retrieval: Quickly obtain user or team details, allowing your agent to personalize interactions and automate workflows based on your Canva account info.

Supported Tools & Triggers

Tools
Access user specific brand templates listThis year, brand template ids will change; integrations storing them must update within 6 months.
Create canva design with optional assetCreate a new canva design using a preset or custom dimensions, and add an asset with `asset id` from a user's project using relevant apis.
Create comment reply in designThis preview api allows replying to comments within a design on canva, with a limit of 100 replies per comment.
Create design comment in preview apiThis api is in preview and may change without notice; integrations using it won't pass review.
Create user or sub folderThis api creates a folder in a canva user's projects at the top level or within another folder, returning the new folder's id and additional details upon success.
Delete asset by idYou can delete an asset by specifying its `assetid`.
Exchange oauth 2 0 access or refresh tokenThe oauth 2.
Fetch asset upload job statusSummarize asset upload outcome by repeatedly calling the endpoint until a 'success' or 'failed' status is received after using the create asset upload job api.
Fetch canva connect signing public keysThe api for verifying canva webhooks, 'connect/keys,' is in preview, meaning unstable, not for public integrations, and provides a rotating jwk for signature verification to prevent replay attacks.
Fetch current user detailsReturns the user id, team id, and display name of the user account associated with the provided access token.
Fetch design metadata and access informationGets the metadata for a design.
Get design export job resultGet the outcome of a canva design export job; if done, receive download links for the design’s pages.
Initiate canva design autofill jobUpcoming brand template id updates require migration within 6 months.
Initiates canva design export jobCanva's new job feature exports designs in multiple formats using a design id, with provided download links.
List design pages with paginationPreview api for canva: subject to unannounced changes and not for public integrations.
List folder items by type with sortingLists the items in a folder, including each item's `type`.
List User DesignsProvides a summary of canva user designs, includes search filtering, and allows showing both self-created and shared designs with sorting options.
Move item to specified folderTransfers an item to a different folder by specifying both the destination folder's id and the item's id.
Remove folder and move contents to trashDeletes a folder by moving the user's content to trash and reassigning other users' content to their top-level projects.
Retrieve app public key setReturns the json web key set (public keys) of an app.
Retrieve a specific design commentThis preview api is subject to unannounced changes and can't be used in public integrations.
Retrieve asset metadata by idYou can retrieve the metadata of an asset by specifying its `assetid`.
Retrieve brand template dataset definitionCanva's brand template ids will change later this year, including a 6-month integration migration.
Retrieve canva enterprise brand template metadataUpcoming update will change brand template ids; integrations must migrate within 6 months.
Retrieve design autofill job statusApi users with canva enterprise membership can retrieve design autofill job results, potentially requiring multiple requests until a `success` or `failed` status is received.
Retrieve design import job statusGets the status and results of design import jobs created using the [create design import job api](https://www.
Retrieve folder details by idGets the name and other details of a folder using a folder's `folderid`.
RetrieveuserprofiledataCurrently, this returns the display name of the user account associated with the provided access token.
Revoke oauth tokensRevoke a refresh token to end its lineage and user consent, requiring re-authentication.
Update asset s name and tags by idYou can update the name and tags of an asset by specifying its `assetid`.
Update folder details by idUpdates a folder's details using its `folderid`.
Validate oauth token propertiesCheck an access token's validity and properties via introspection, requiring authentication.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before you begin, make sure you have:
  • Node.js and npm installed
  • A Composio account with API key
  • An OpenAI API key

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install required dependencies

bash
npm install @ai-sdk/openai @ai-sdk/mcp @composio/core ai dotenv

First, install the necessary packages for your project.

What you're installing:

  • @ai-sdk/openai: Vercel AI SDK's OpenAI provider
  • @ai-sdk/mcp: MCP client for Vercel AI SDK
  • @composio/core: Composio SDK for tool integration
  • ai: Core Vercel AI SDK
  • dotenv: Environment variable management

Set up environment variables

bash
OPENAI_API_KEY=your_openai_api_key_here
COMPOSIO_API_KEY=your_composio_api_key_here
COMPOSIO_USER_ID=your_user_id_here

Create a .env file in your project root.

What's needed:

  • OPENAI_API_KEY: Your OpenAI API key for GPT model access
  • COMPOSIO_API_KEY: Your Composio API key for tool access
  • COMPOSIO_USER_ID: A unique identifier for the user session

Import required modules and validate environment

typescript
import "dotenv/config";
import { openai } from "@ai-sdk/openai";
import { Composio } from "@composio/core";
import * as readline from "readline";
import { streamText, type ModelMessage, stepCountIs } from "ai";
import { experimental_createMCPClient as createMCPClient } from "@ai-sdk/mcp";

const composioAPIKey = process.env.COMPOSIO_API_KEY;
const composioUserID = process.env.COMPOSIO_USER_ID;

if (!process.env.OPENAI_API_KEY) throw new Error("OPENAI_API_KEY is not set");
if (!composioAPIKey) throw new Error("COMPOSIO_API_KEY is not set");
if (!composioUserID) throw new Error("COMPOSIO_USER_ID is not set");

const composio = new Composio({
  apiKey: composioAPIKey,
});
What's happening:
  • We're importing all necessary libraries including Vercel AI SDK's OpenAI provider and Composio
  • The dotenv/config import automatically loads environment variables
  • The MCP client import enables connection to Composio's tool server

Create Tool Router session and initialize MCP client

typescript
async function main() {
  // Create a tool router session for the user
  const { session } = await composio.create(composioUserID!, {
    toolkits: ["canva"],
  });

  const mcpUrl = session.mcp.url;
What's happening:
  • We're creating a Tool Router session that gives your agent access to Canva tools
  • The create method takes the user ID and specifies which toolkits should be available
  • The returned mcp object contains the URL and authentication headers needed to connect to the MCP server
  • This session provides access to all Canva-related tools through the MCP protocol

Connect to MCP server and retrieve tools

typescript
const mcpClient = await createMCPClient({
  transport: {
    type: "http",
    url: mcpUrl,
    headers: session.mcp.headers, // Authentication headers for the Composio MCP server
  },
});

const tools = await mcpClient.tools();
What's happening:
  • We're creating an MCP client that connects to our Composio Tool Router session via HTTP
  • The mcp.url provides the endpoint, and mcp.headers contains authentication credentials
  • The type: "http" is important - Composio requires HTTP transport
  • tools() retrieves all available Canva tools that the agent can use

Initialize conversation and CLI interface

typescript
let messages: ModelMessage[] = [];

console.log("Chat started! Type 'exit' or 'quit' to end the conversation.\n");
console.log(
  "Ask any questions related to canva, like summarize my last 5 emails, send an email, etc... :)))\n",
);

const rl = readline.createInterface({
  input: process.stdin,
  output: process.stdout,
  prompt: "> ",
});

rl.prompt();
What's happening:
  • We initialize an empty messages array to maintain conversation history
  • A readline interface is created to accept user input from the command line
  • Instructions are displayed to guide the user on how to interact with the agent

Handle user input and stream responses with real-time tool feedback

typescript
rl.on("line", async (userInput: string) => {
  const trimmedInput = userInput.trim();

  if (["exit", "quit", "bye"].includes(trimmedInput.toLowerCase())) {
    console.log("\nGoodbye!");
    rl.close();
    process.exit(0);
  }

  if (!trimmedInput) {
    rl.prompt();
    return;
  }

  messages.push({ role: "user", content: trimmedInput });
  console.log("\nAgent is thinking...\n");

  try {
    const stream = streamText({
      model: openai("gpt-5"),
      messages,
      tools,
      toolChoice: "auto",
      stopWhen: stepCountIs(10),
      onStepFinish: (step) => {
        for (const toolCall of step.toolCalls) {
          console.log(`[Using tool: ${toolCall.toolName}]`);
          }
          if (step.toolCalls.length > 0) {
            console.log(""); // Add space after tool calls
          }
        },
      });

      for await (const chunk of stream.textStream) {
        process.stdout.write(chunk);
      }

      console.log("\n\n---\n");

      // Get final result for message history
      const response = await stream.response;
      if (response?.messages?.length) {
        messages.push(...response.messages);
      }
    } catch (error) {
      console.error("\nAn error occurred while talking to the agent:");
      console.error(error);
      console.log(
        "\nYou can try again or restart the app if it keeps happening.\n",
      );
    } finally {
      rl.prompt();
    }
  });

  rl.on("close", async () => {
    await mcpClient.close();
    console.log("\n👋 Session ended.");
    process.exit(0);
  });
}

main().catch((err) => {
  console.error("Fatal error:", err);
  process.exit(1);
});
What's happening:
  • We use streamText instead of generateText to stream responses in real-time
  • toolChoice: "auto" allows the model to decide when to use Canva tools
  • stopWhen: stepCountIs(10) allows up to 10 steps for complex multi-tool operations
  • onStepFinish callback displays which tools are being used in real-time
  • We iterate through the text stream to create a typewriter effect as the agent responds
  • The complete response is added to conversation history to maintain context
  • Errors are caught and displayed with helpful retry suggestions

Complete Code

Here's the complete code to get you started with Canva and Vercel AI SDK:

typescript
import "dotenv/config";
import { openai } from "@ai-sdk/openai";
import { Composio } from "@composio/core";
import * as readline from "readline";
import { streamText, type ModelMessage, stepCountIs } from "ai";
import { experimental_createMCPClient as createMCPClient } from "@ai-sdk/mcp";

const composioAPIKey = process.env.COMPOSIO_API_KEY;
const composioUserID = process.env.COMPOSIO_USER_ID;

if (!process.env.OPENAI_API_KEY) throw new Error("OPENAI_API_KEY is not set");
if (!composioAPIKey) throw new Error("COMPOSIO_API_KEY is not set");
if (!composioUserID) throw new Error("COMPOSIO_USER_ID is not set");

const composio = new Composio({
  apiKey: composioAPIKey,
});

async function main() {
  // Create a tool router session for the user
  const { session } = await composio.create(composioUserID!, {
    toolkits: ["canva"],
  });

  const mcpUrl = session.mcp.url;

  const mcpClient = await createMCPClient({
    transport: {
      type: "http",
      url: mcpUrl,
      headers: session.mcp.headers, // Authentication headers for the Composio MCP server
    },
  });

  const tools = await mcpClient.tools();

  let messages: ModelMessage[] = [];

  console.log("Chat started! Type 'exit' or 'quit' to end the conversation.\n");
  console.log(
    "Ask any questions related to canva, like summarize my last 5 emails, send an email, etc... :)))\n",
  );

  const rl = readline.createInterface({
    input: process.stdin,
    output: process.stdout,
    prompt: "> ",
  });

  rl.prompt();

  rl.on("line", async (userInput: string) => {
    const trimmedInput = userInput.trim();

    if (["exit", "quit", "bye"].includes(trimmedInput.toLowerCase())) {
      console.log("\nGoodbye!");
      rl.close();
      process.exit(0);
    }

    if (!trimmedInput) {
      rl.prompt();
      return;
    }

    messages.push({ role: "user", content: trimmedInput });
    console.log("\nAgent is thinking...\n");

    try {
      const stream = streamText({
        model: openai("gpt-5"),
        messages,
        tools,
        toolChoice: "auto",
        stopWhen: stepCountIs(10),
        onStepFinish: (step) => {
          for (const toolCall of step.toolCalls) {
            console.log(`[Using tool: ${toolCall.toolName}]`);
          }
          if (step.toolCalls.length > 0) {
            console.log(""); // Add space after tool calls
          }
        },
      });

      for await (const chunk of stream.textStream) {
        process.stdout.write(chunk);
      }

      console.log("\n\n---\n");

      // Get final result for message history
      const response = await stream.response;
      if (response?.messages?.length) {
        messages.push(...response.messages);
      }
    } catch (error) {
      console.error("\nAn error occurred while talking to the agent:");
      console.error(error);
      console.log(
        "\nYou can try again or restart the app if it keeps happening.\n",
      );
    } finally {
      rl.prompt();
    }
  });

  rl.on("close", async () => {
    await mcpClient.close();
    console.log("\n👋 Session ended.");
    process.exit(0);
  });
}

main().catch((err) => {
  console.error("Fatal error:", err);
  process.exit(1);
});

Conclusion

You've successfully built a Canva agent using the Vercel AI SDK with streaming capabilities! This implementation provides a powerful foundation for building AI applications with natural language interfaces and real-time feedback.

Key features of this implementation:

  • Real-time streaming responses for a better user experience with typewriter effect
  • Live tool execution feedback showing which tools are being used as the agent works
  • Dynamic tool loading through Composio's Tool Router with secure authentication
  • Multi-step tool execution with configurable step limits (up to 10 steps)
  • Comprehensive error handling for robust agent execution
  • Conversation history maintenance for context-aware responses

You can extend this further by adding custom error handling, implementing specific business logic, or integrating additional Composio toolkits to create multi-app workflows.

How to build Canva MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Canva MCP?

With a standalone Canva MCP server, the agents and LLMs can only access a fixed set of Canva tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Canva and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with Vercel AI SDK?

Yes, you can. Vercel AI SDK fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Canva tools.

Can I manage the permissions and scopes for Canva while using Tool Router?

Yes, absolutely. You can configure which Canva scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Canva data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.