How to integrate Bitquery MCP with Vercel AI SDK

Framework Integration Gradient
Bitquery Logo
Vercel AI SDK Logo
divider

Introduction

This guide walks you through connecting Bitquery to Vercel AI SDK using the Composio tool router. By the end, you'll have a working Bitquery agent that can show real-time ethereum mempool transactions, count unique wallet addresses for solana, query historical bitcoin transactions from 2021, aggregate all erc20 transfers on polygon today through natural language commands.

This guide will help you understand how to give your Vercel AI SDK agent real control over a Bitquery account through Composio's Bitquery MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • How to set up and configure a Vercel AI SDK agent with Bitquery integration
  • Using Composio's Tool Router to dynamically load and access Bitquery tools
  • Creating an MCP client connection using HTTP transport
  • Building an interactive CLI chat interface with conversation history management
  • Handling tool calls and results within the Vercel AI SDK framework

What is Vercel AI SDK?

The Vercel AI SDK is a TypeScript library for building AI-powered applications. It provides tools for creating agents that can use external services and maintain conversation state.

Key features include:

  • streamText: Core function for streaming responses with real-time tool support
  • MCP Client: Built-in support for Model Context Protocol
  • Step Counting: Control multi-step tool execution
  • OpenAI Provider: Native integration with OpenAI models

What is the Bitquery MCP server, and what's possible with it?

The Bitquery MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Bitquery account. It provides structured and secure access to blockchain datasets and real-time analytics, so your agent can perform actions like querying historical transactions, streaming mempool activity, selecting blockchain networks, and aggregating metrics across 40+ supported chains.

  • Seamless blockchain data querying: Let your agent run powerful queries on historical or real-time blockchain data across multiple networks using Bitquery's combined or archive databases.
  • Live mempool monitoring: Subscribe and stream pending transactions from EVM-compatible chains in real time, enabling instant insights into network activity as it happens.
  • On-demand network and database selection: Have your agent dynamically select blockchain networks and datasets—like Ethereum, BNB Chain, or others—to tailor queries for your specific use case.
  • Metric aggregation and analysis: Automate the aggregation of transaction counts, unique values, or conditional metrics, empowering your agent to analyze blockchain trends without manual intervention.
  • Advanced GraphQL customization: Use aliases and conditional snippets to refine data responses, ensuring clarity and precise control in complex blockchain analytics workflows.

Supported Tools & Triggers

Tools
Aliases MetricTool to use graphql aliases to rename fields in the response for clarity and disambiguation.
Archive Database QueryTool to query the archive database.
Combined Database QueryTool to query the combined database, which merges archive and real-time databases.
Conditional Metrics SnippetTool to generate a graphql metric snippet with conditional logic.
Count Distinct MetricTool to use the count distinct metric to aggregate unique values for a field.
Count MetricTool to use the count metric to aggregate the number of records matching a graphql query.
Database SelectionTool to select the database (archive, realtime, combined) to query at the top level of a graphql request.
Early Access Program QueryTool to access streaming data across various blockchain networks for evaluation purposes.
Mempool SubscriptionTool to subscribe to real-time mempool updates for evm chains (ethereum, bnb, etc.
Network SelectionTool to select the blockchain network for graphql queries.
Options QueryTool to fetch graphql dataset options via schema introspection.
Price Asymmetry MetricTool to generate graphql priceasymmetry filter snippet.
Quantile MetricTool to calculate quantiles to understand the distribution of numerical data.
Realtime Database QueryRealtime database query
Select By MetricTool to generate a graphql metric snippet filtering by its value using selectwhere.
Statistics MetricTool to compute statistical metrics (mean, median, etc.
Sum MetricTool to calculate the sum of a specified field's values across defined dimensions.
Uniq MetricTool to estimate the count of unique values using the uniq metric.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before you begin, make sure you have:
  • Node.js and npm installed
  • A Composio account with API key
  • An OpenAI API key

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install required dependencies

bash
npm install @ai-sdk/openai @ai-sdk/mcp @composio/core ai dotenv

First, install the necessary packages for your project.

What you're installing:

  • @ai-sdk/openai: Vercel AI SDK's OpenAI provider
  • @ai-sdk/mcp: MCP client for Vercel AI SDK
  • @composio/core: Composio SDK for tool integration
  • ai: Core Vercel AI SDK
  • dotenv: Environment variable management

Set up environment variables

bash
OPENAI_API_KEY=your_openai_api_key_here
COMPOSIO_API_KEY=your_composio_api_key_here
COMPOSIO_USER_ID=your_user_id_here

Create a .env file in your project root.

What's needed:

  • OPENAI_API_KEY: Your OpenAI API key for GPT model access
  • COMPOSIO_API_KEY: Your Composio API key for tool access
  • COMPOSIO_USER_ID: A unique identifier for the user session

Import required modules and validate environment

typescript
import "dotenv/config";
import { openai } from "@ai-sdk/openai";
import { Composio } from "@composio/core";
import * as readline from "readline";
import { streamText, type ModelMessage, stepCountIs } from "ai";
import { experimental_createMCPClient as createMCPClient } from "@ai-sdk/mcp";

const composioAPIKey = process.env.COMPOSIO_API_KEY;
const composioUserID = process.env.COMPOSIO_USER_ID;

if (!process.env.OPENAI_API_KEY) throw new Error("OPENAI_API_KEY is not set");
if (!composioAPIKey) throw new Error("COMPOSIO_API_KEY is not set");
if (!composioUserID) throw new Error("COMPOSIO_USER_ID is not set");

const composio = new Composio({
  apiKey: composioAPIKey,
});
What's happening:
  • We're importing all necessary libraries including Vercel AI SDK's OpenAI provider and Composio
  • The dotenv/config import automatically loads environment variables
  • The MCP client import enables connection to Composio's tool server

Create Tool Router session and initialize MCP client

typescript
async function main() {
  // Create a tool router session for the user
  const { session } = await composio.create(composioUserID!, {
    toolkits: ["bitquery"],
  });

  const mcpUrl = session.mcp.url;
What's happening:
  • We're creating a Tool Router session that gives your agent access to Bitquery tools
  • The create method takes the user ID and specifies which toolkits should be available
  • The returned mcp object contains the URL and authentication headers needed to connect to the MCP server
  • This session provides access to all Bitquery-related tools through the MCP protocol

Connect to MCP server and retrieve tools

typescript
const mcpClient = await createMCPClient({
  transport: {
    type: "http",
    url: mcpUrl,
    headers: session.mcp.headers, // Authentication headers for the Composio MCP server
  },
});

const tools = await mcpClient.tools();
What's happening:
  • We're creating an MCP client that connects to our Composio Tool Router session via HTTP
  • The mcp.url provides the endpoint, and mcp.headers contains authentication credentials
  • The type: "http" is important - Composio requires HTTP transport
  • tools() retrieves all available Bitquery tools that the agent can use

Initialize conversation and CLI interface

typescript
let messages: ModelMessage[] = [];

console.log("Chat started! Type 'exit' or 'quit' to end the conversation.\n");
console.log(
  "Ask any questions related to bitquery, like summarize my last 5 emails, send an email, etc... :)))\n",
);

const rl = readline.createInterface({
  input: process.stdin,
  output: process.stdout,
  prompt: "> ",
});

rl.prompt();
What's happening:
  • We initialize an empty messages array to maintain conversation history
  • A readline interface is created to accept user input from the command line
  • Instructions are displayed to guide the user on how to interact with the agent

Handle user input and stream responses with real-time tool feedback

typescript
rl.on("line", async (userInput: string) => {
  const trimmedInput = userInput.trim();

  if (["exit", "quit", "bye"].includes(trimmedInput.toLowerCase())) {
    console.log("\nGoodbye!");
    rl.close();
    process.exit(0);
  }

  if (!trimmedInput) {
    rl.prompt();
    return;
  }

  messages.push({ role: "user", content: trimmedInput });
  console.log("\nAgent is thinking...\n");

  try {
    const stream = streamText({
      model: openai("gpt-5"),
      messages,
      tools,
      toolChoice: "auto",
      stopWhen: stepCountIs(10),
      onStepFinish: (step) => {
        for (const toolCall of step.toolCalls) {
          console.log(`[Using tool: ${toolCall.toolName}]`);
          }
          if (step.toolCalls.length > 0) {
            console.log(""); // Add space after tool calls
          }
        },
      });

      for await (const chunk of stream.textStream) {
        process.stdout.write(chunk);
      }

      console.log("\n\n---\n");

      // Get final result for message history
      const response = await stream.response;
      if (response?.messages?.length) {
        messages.push(...response.messages);
      }
    } catch (error) {
      console.error("\nAn error occurred while talking to the agent:");
      console.error(error);
      console.log(
        "\nYou can try again or restart the app if it keeps happening.\n",
      );
    } finally {
      rl.prompt();
    }
  });

  rl.on("close", async () => {
    await mcpClient.close();
    console.log("\n👋 Session ended.");
    process.exit(0);
  });
}

main().catch((err) => {
  console.error("Fatal error:", err);
  process.exit(1);
});
What's happening:
  • We use streamText instead of generateText to stream responses in real-time
  • toolChoice: "auto" allows the model to decide when to use Bitquery tools
  • stopWhen: stepCountIs(10) allows up to 10 steps for complex multi-tool operations
  • onStepFinish callback displays which tools are being used in real-time
  • We iterate through the text stream to create a typewriter effect as the agent responds
  • The complete response is added to conversation history to maintain context
  • Errors are caught and displayed with helpful retry suggestions

Complete Code

Here's the complete code to get you started with Bitquery and Vercel AI SDK:

typescript
import "dotenv/config";
import { openai } from "@ai-sdk/openai";
import { Composio } from "@composio/core";
import * as readline from "readline";
import { streamText, type ModelMessage, stepCountIs } from "ai";
import { experimental_createMCPClient as createMCPClient } from "@ai-sdk/mcp";

const composioAPIKey = process.env.COMPOSIO_API_KEY;
const composioUserID = process.env.COMPOSIO_USER_ID;

if (!process.env.OPENAI_API_KEY) throw new Error("OPENAI_API_KEY is not set");
if (!composioAPIKey) throw new Error("COMPOSIO_API_KEY is not set");
if (!composioUserID) throw new Error("COMPOSIO_USER_ID is not set");

const composio = new Composio({
  apiKey: composioAPIKey,
});

async function main() {
  // Create a tool router session for the user
  const { session } = await composio.create(composioUserID!, {
    toolkits: ["bitquery"],
  });

  const mcpUrl = session.mcp.url;

  const mcpClient = await createMCPClient({
    transport: {
      type: "http",
      url: mcpUrl,
      headers: session.mcp.headers, // Authentication headers for the Composio MCP server
    },
  });

  const tools = await mcpClient.tools();

  let messages: ModelMessage[] = [];

  console.log("Chat started! Type 'exit' or 'quit' to end the conversation.\n");
  console.log(
    "Ask any questions related to bitquery, like summarize my last 5 emails, send an email, etc... :)))\n",
  );

  const rl = readline.createInterface({
    input: process.stdin,
    output: process.stdout,
    prompt: "> ",
  });

  rl.prompt();

  rl.on("line", async (userInput: string) => {
    const trimmedInput = userInput.trim();

    if (["exit", "quit", "bye"].includes(trimmedInput.toLowerCase())) {
      console.log("\nGoodbye!");
      rl.close();
      process.exit(0);
    }

    if (!trimmedInput) {
      rl.prompt();
      return;
    }

    messages.push({ role: "user", content: trimmedInput });
    console.log("\nAgent is thinking...\n");

    try {
      const stream = streamText({
        model: openai("gpt-5"),
        messages,
        tools,
        toolChoice: "auto",
        stopWhen: stepCountIs(10),
        onStepFinish: (step) => {
          for (const toolCall of step.toolCalls) {
            console.log(`[Using tool: ${toolCall.toolName}]`);
          }
          if (step.toolCalls.length > 0) {
            console.log(""); // Add space after tool calls
          }
        },
      });

      for await (const chunk of stream.textStream) {
        process.stdout.write(chunk);
      }

      console.log("\n\n---\n");

      // Get final result for message history
      const response = await stream.response;
      if (response?.messages?.length) {
        messages.push(...response.messages);
      }
    } catch (error) {
      console.error("\nAn error occurred while talking to the agent:");
      console.error(error);
      console.log(
        "\nYou can try again or restart the app if it keeps happening.\n",
      );
    } finally {
      rl.prompt();
    }
  });

  rl.on("close", async () => {
    await mcpClient.close();
    console.log("\n👋 Session ended.");
    process.exit(0);
  });
}

main().catch((err) => {
  console.error("Fatal error:", err);
  process.exit(1);
});

Conclusion

You've successfully built a Bitquery agent using the Vercel AI SDK with streaming capabilities! This implementation provides a powerful foundation for building AI applications with natural language interfaces and real-time feedback.

Key features of this implementation:

  • Real-time streaming responses for a better user experience with typewriter effect
  • Live tool execution feedback showing which tools are being used as the agent works
  • Dynamic tool loading through Composio's Tool Router with secure authentication
  • Multi-step tool execution with configurable step limits (up to 10 steps)
  • Comprehensive error handling for robust agent execution
  • Conversation history maintenance for context-aware responses

You can extend this further by adding custom error handling, implementing specific business logic, or integrating additional Composio toolkits to create multi-app workflows.

How to build Bitquery MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Bitquery MCP?

With a standalone Bitquery MCP server, the agents and LLMs can only access a fixed set of Bitquery tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Bitquery and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with Vercel AI SDK?

Yes, you can. Vercel AI SDK fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Bitquery tools.

Can I manage the permissions and scopes for Bitquery while using Tool Router?

Yes, absolutely. You can configure which Bitquery scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Bitquery data and credentials are handled as safely as possible.

Used by agents from

Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.