How to integrate Bitbucket MCP with Pydantic AI

Framework Integration Gradient
Bitbucket Logo
Pydantic AI Logo
divider

Introduction

This guide walks you through connecting Bitbucket to Pydantic AI using the Composio tool router. By the end, you'll have a working Bitbucket agent that can create a new branch off main, open a pull request for my feature, comment on the latest open issue, fetch readme file from repository through natural language commands.

This guide will help you understand how to give your Pydantic AI agent real control over a Bitbucket account through Composio's Bitbucket MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • How to set up your Composio API key and User ID
  • How to create a Composio Tool Router session for Bitbucket
  • How to attach an MCP Server to a Pydantic AI agent
  • How to stream responses and maintain chat history
  • How to build a simple REPL-style chat interface to test your Bitbucket workflows

What is Pydantic AI?

Pydantic AI is a Python framework for building AI agents with strong typing and validation. It leverages Pydantic's data validation capabilities to create robust, type-safe AI applications.

Key features include:

  • Type Safety: Built on Pydantic for automatic data validation
  • MCP Support: Native support for Model Context Protocol servers
  • Streaming: Built-in support for streaming responses
  • Async First: Designed for async/await patterns

What is the Bitbucket MCP server, and what's possible with it?

The Bitbucket MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Bitbucket account. It provides structured and secure access to your repositories, issues, and pull requests, so your agent can create branches, manage issues, review code, and handle repository operations for you.

  • Branch and repository management: Let your agent create new branches for feature work or initialize fresh repositories within your Bitbucket workspace—no manual setup required.
  • Automated issue tracking: Have your agent create, comment on, or delete issues to streamline team collaboration and bug tracking directly from your workflows.
  • Pull request automation: Empower your agent to open new pull requests for code review, ensuring changes are properly tracked and integrated.
  • File and snippet operations: Ask your agent to fetch specific files from any branch or commit, or to post comments on code snippets for contextual discussions.
  • User profile and workspace insights: Retrieve your Bitbucket user profile details on demand, making it easy to personalize and audit agent-driven actions.

Supported Tools & Triggers

Tools
Create a branchCreates a new branch in a bitbucket repository from a target commit hash; the branch name must be unique, adhere to bitbucket's naming conventions, and not include the 'refs/heads/' prefix.
Create an issueCreates a new issue in a bitbucket repository, setting the authenticated user as reporter; ensures assignee (if provided) has repository access, and that any specified milestone, version, or component ids exist.
Create an issue commentAdds a new comment with markdown support to an existing bitbucket issue.
Create a pull requestCreates a new pull request in a specified bitbucket repository, ensuring the source branch exists and is distinct from the (optional) destination branch.
Create repositoryCreates a new bitbucket 'git' repository in a specified workspace, defaulting to the workspace's oldest project if `project key` is not provided.
Create snippet commentPosts a new top-level comment or a threaded reply to an existing comment on a specified bitbucket snippet.
Delete issuePermanently deletes a specific issue, identified by its `issue id`, from the repository specified by `repo slug` within the given `workspace`.
Delete repositoryPermanently deletes a specified bitbucket repository; this action is irreversible and does not affect forks.
Get current userRetrieves the profile information (uuid, display name, links, creation date) for the currently authenticated bitbucket user.
Get file from repositoryRetrieves a specific file's content from a bitbucket repository at a given commit (hash, branch, or tag), failing if the file path is invalid for that commit.
Get Pull RequestGet a single pull request by id with complete details.
Get snippetRetrieves a specific bitbucket snippet by its encoded id from an existing workspace, returning its metadata and file structure.
List pull requestsLists pull requests in a specified, accessible bitbucket repository, optionally filtering by state (open, merged, declined).
List repositories in workspaceLists repositories in a specified bitbucket workspace, accessible to the authenticated user, with options to filter by role or query string, and sort results.
List workspace membersLists all members of a specified bitbucket workspace; the workspace must exist.
List workspacesLists bitbucket workspaces accessible to the authenticated user, optionally filtered and sorted.
Update an issueUpdates an existing issue in a bitbucket repository by modifying specified attributes; requires `workspace`, `repo slug`, `issue id`, and at least one attribute to update.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Python 3.9 or higher
  • A Composio account with an active API key
  • Basic familiarity with Python and async programming

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

bash
pip install composio pydantic-ai python-dotenv

Install the required libraries.

What's happening:

  • composio connects your agent to external SaaS tools like Bitbucket
  • pydantic-ai lets you create structured AI agents with tool support
  • python-dotenv loads your environment variables securely from a .env file

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
USER_ID=your_user_id_here
OPENAI_API_KEY=your_openai_api_key

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates your agent to Composio's API
  • USER_ID associates your session with your account for secure tool access
  • OPENAI_API_KEY to access OpenAI LLMs

Import dependencies

python
import asyncio
import os
from dotenv import load_dotenv
from composio import Composio
from pydantic_ai import Agent
from pydantic_ai.mcp import MCPServerStreamableHTTP

load_dotenv()
What's happening:
  • We load environment variables and import required modules
  • Composio manages connections to Bitbucket
  • MCPServerStreamableHTTP connects to the Bitbucket MCP server endpoint
  • Agent from Pydantic AI lets you define and run the AI assistant

Create a Tool Router Session

python
async def main():
    api_key = os.getenv("COMPOSIO_API_KEY")
    user_id = os.getenv("USER_ID")
    if not api_key or not user_id:
        raise RuntimeError("Set COMPOSIO_API_KEY and USER_ID in your environment")

    # Create a Composio Tool Router session for Bitbucket
    composio = Composio(api_key=api_key)
    session = composio.create(
        user_id=user_id,
        toolkits=["bitbucket"],
    )
    url = session.mcp.url
    if not url:
        raise ValueError("Composio session did not return an MCP URL")
What's happening:
  • We're creating a Tool Router session that gives your agent access to Bitbucket tools
  • The create method takes the user ID and specifies which toolkits should be available
  • The returned session.mcp.url is the MCP server URL that your agent will use

Initialize the Pydantic AI Agent

python
# Attach the MCP server to a Pydantic AI Agent
bitbucket_mcp = MCPServerStreamableHTTP(url, headers={"x-api-key": COMPOSIO_API_KEY})
agent = Agent(
    "openai:gpt-5",
    toolsets=[bitbucket_mcp],
    instructions=(
        "You are a Bitbucket assistant. Use Bitbucket tools to help users "
        "with their requests. Ask clarifying questions when needed."
    ),
)
What's happening:
  • The MCP client connects to the Bitbucket endpoint
  • The agent uses GPT-5 to interpret user commands and perform Bitbucket operations
  • The instructions field defines the agent's role and behavior

Build the chat interface

python
# Simple REPL with message history
history = []
print("Chat started! Type 'exit' or 'quit' to end.\n")
print("Try asking the agent to help you with Bitbucket.\n")

while True:
    user_input = input("You: ").strip()
    if user_input.lower() in {"exit", "quit", "bye"}:
        print("\nGoodbye!")
        break
    if not user_input:
        continue

    print("\nAgent is thinking...\n", flush=True)

    async with agent.run_stream(user_input, message_history=history) as stream_result:
        collected_text = ""
        async for chunk in stream_result.stream_output():
            text_piece = None
            if isinstance(chunk, str):
                text_piece = chunk
            elif hasattr(chunk, "delta") and isinstance(chunk.delta, str):
                text_piece = chunk.delta
            elif hasattr(chunk, "text"):
                text_piece = chunk.text
            if text_piece:
                collected_text += text_piece
        result = stream_result

    print(f"Agent: {collected_text}\n")
    history = result.all_messages()
What's happening:
  • The agent reads input from the terminal and streams its response
  • Bitbucket API calls happen automatically under the hood
  • The model keeps conversation history to maintain context across turns

Run the application

python
if __name__ == "__main__":
    asyncio.run(main())
What's happening:
  • The asyncio loop launches the agent and keeps it running until you exit

Complete Code

Here's the complete code to get you started with Bitbucket and Pydantic AI:

python
import asyncio
import os
from dotenv import load_dotenv
from composio import Composio
from pydantic_ai import Agent
from pydantic_ai.mcp import MCPServerStreamableHTTP

load_dotenv()

async def main():
    api_key = os.getenv("COMPOSIO_API_KEY")
    user_id = os.getenv("USER_ID")
    if not api_key or not user_id:
        raise RuntimeError("Set COMPOSIO_API_KEY and USER_ID in your environment")

    # Create a Composio Tool Router session for Bitbucket
    composio = Composio(api_key=api_key)
    session = composio.create(
        user_id=user_id,
        toolkits=["bitbucket"],
    )
    url = session.mcp.url
    if not url:
        raise ValueError("Composio session did not return an MCP URL")

    # Attach the MCP server to a Pydantic AI Agent
    bitbucket_mcp = MCPServerStreamableHTTP(url, headers={"x-api-key": COMPOSIO_API_KEY})
    agent = Agent(
        "openai:gpt-5",
        toolsets=[bitbucket_mcp],
        instructions=(
            "You are a Bitbucket assistant. Use Bitbucket tools to help users "
            "with their requests. Ask clarifying questions when needed."
        ),
    )

    # Simple REPL with message history
    history = []
    print("Chat started! Type 'exit' or 'quit' to end.\n")
    print("Try asking the agent to help you with Bitbucket.\n")

    while True:
        user_input = input("You: ").strip()
        if user_input.lower() in {"exit", "quit", "bye"}:
            print("\nGoodbye!")
            break
        if not user_input:
            continue

        print("\nAgent is thinking...\n", flush=True)

        async with agent.run_stream(user_input, message_history=history) as stream_result:
            collected_text = ""
            async for chunk in stream_result.stream_output():
                text_piece = None
                if isinstance(chunk, str):
                    text_piece = chunk
                elif hasattr(chunk, "delta") and isinstance(chunk.delta, str):
                    text_piece = chunk.delta
                elif hasattr(chunk, "text"):
                    text_piece = chunk.text
                if text_piece:
                    collected_text += text_piece
            result = stream_result

        print(f"Agent: {collected_text}\n")
        history = result.all_messages()

if __name__ == "__main__":
    asyncio.run(main())

Conclusion

You've built a Pydantic AI agent that can interact with Bitbucket through Composio's Tool Router. With this setup, your agent can perform real Bitbucket actions through natural language. You can extend this further by:
  • Adding other toolkits like Gmail, HubSpot, or Salesforce
  • Building a web-based chat interface around this agent
  • Using multiple MCP endpoints to enable cross-app workflows (for example, Gmail + Bitbucket for workflow automation)
This architecture makes your AI agent "agent-native", able to securely use APIs in a unified, composable way without custom integrations.

How to build Bitbucket MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Bitbucket MCP?

With a standalone Bitbucket MCP server, the agents and LLMs can only access a fixed set of Bitbucket tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Bitbucket and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with Pydantic AI?

Yes, you can. Pydantic AI fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Bitbucket tools.

Can I manage the permissions and scopes for Bitbucket while using Tool Router?

Yes, absolutely. You can configure which Bitbucket scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Bitbucket data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.