How to integrate Apify MCP with OpenAI Agents SDK

Framework Integration Gradient
Apify Logo
open-ai-agents-sdk Logo
divider

Introduction

This guide walks you through connecting Apify to the OpenAI Agents SDK using the Composio tool router. By the end, you'll have a working Apify agent that can create a new dataset for scraped results, fetch items from a specific apify dataset, get details of my latest apify actor, set up webhook for actor task completion through natural language commands.

This guide will help you understand how to give your OpenAI Agents SDK agent real control over a Apify account through Composio's Apify MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get and set up your OpenAI and Composio API keys
  • Install the necessary dependencies
  • Initialize Composio and create a Tool Router session for Apify
  • Configure an AI agent that can use Apify as a tool
  • Run a live chat session where you can ask the agent to perform Apify operations

What is open-ai-agents-sdk?

The OpenAI Agents SDK is a lightweight framework for building AI agents that can use tools and maintain conversation state. It provides a simple interface for creating agents with hosted MCP tool support.

Key features include:

  • Hosted MCP Tools: Connect to external services through hosted MCP endpoints
  • SQLite Sessions: Persist conversation history across interactions
  • Simple API: Clean interface with Agent, Runner, and tool configuration
  • Streaming Support: Real-time response streaming for interactive applications

What is the Apify MCP server, and what's possible with it?

The Apify MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Apify account. It provides structured and secure access to your web scraping and automation workflows, so your agent can create actors, manage datasets, fetch scraped data, schedule tasks, and maintain webhooks on your behalf.

  • Automated Actor Creation and Management: Easily instruct your agent to programmatically create, configure, or delete Apify actors for custom web automation or scraping jobs.
  • Dataset Handling and Data Retrieval: Let your agent spin up new datasets, organize scraped results, and pull items from datasets for downstream analysis or reporting.
  • Task Scheduling and Automation: Have your agent create and manage recurring actor tasks, making it simple to automate data extraction or browser automation at set intervals.
  • Webhook Integration and Event Handling: Direct your agent to set up or remove webhooks for actor tasks, enabling real-time notifications or downstream integrations when a task completes or fails.
  • Actor and Build Metadata Access: Empower your agent to fetch detailed metadata about actors, including build information and configuration details, for monitoring or troubleshooting purposes.

Supported Tools & Triggers

Tools
Create ActorTool to create a new actor with specified configuration.
Create DatasetTool to create a new dataset.
Create Actor TaskTool to create a new actor task with specified settings.
Create Task WebhookTool to create a webhook for an actor task.
Delete ActorTool to delete an actor permanently.
Delete WebhookTool to delete a webhook by its id.
Get Actor DetailsTool to get details of a specific actor.
Get all webhooksTool to get a list of all webhooks created by the user.
Get dataset itemsTool to retrieve items from a dataset.
Get Default BuildTool to get the default build for an actor.
Get Key-Value RecordTool to retrieve a record from a key-value store.
Get list of buildsTool to get a list of builds for a specific actor.
Get list of runsTool to get a list of runs for a specific actor.
Get list of task runsTool to get a list of runs for a specific actor task.
Get list of tasksTool to fetch a paginated list of tasks belonging to the authenticated user.
Get list of task webhooksTool to get a list of webhooks for a specific actor task.
Get logTool to retrieve logs for a specific actor run or build.
Get OpenAPI DefinitionTool to get the openapi definition for a specific actor build.
Get Task InputTool to retrieve the input configuration of a specific task.
Resurrect RunTool to resurrect a finished actor run.
Run Actor AsynchronouslyTool to run a specific actor asynchronously.
Run Actor SyncTool to run a specific actor synchronously with input and return its output record.
Run Actor Sync & Get Dataset ItemsTool to run an actor synchronously and retrieve its dataset items.
Run Task AsynchronouslyTool to run a specific actor task asynchronously.
Store Data in DatasetTool to store data items in a dataset.
Store Data in Key-Value StoreTool to create or update a record in a key-value store.
Update Key-Value StoreTool to update a key-value store's properties.
Update Task InputTool to update the input configuration of a specific actor task.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Composio API Key and OpenAI API Key
  • Primary know-how of OpenAI Agents SDK
  • A live Apify project
  • Some knowledge of Python or Typescript

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key

Install dependencies

pip install composio_openai_agents openai-agents python-dotenv

Install the Composio SDK and the OpenAI Agents SDK.

Set up environment variables

bash
OPENAI_API_KEY=sk-...your-api-key
COMPOSIO_API_KEY=your-api-key
USER_ID=composio_user@gmail.com

Create a .env file and add your OpenAI and Composio API keys.

Import dependencies

import asyncio
import os
from dotenv import load_dotenv

from composio import Composio
from composio_openai_agents import OpenAIAgentsProvider
from agents import Agent, Runner, HostedMCPTool, SQLiteSession
What's happening:
  • You're importing all necessary libraries.
  • The Composio and OpenAIAgentsProvider classes are imported to connect your OpenAI agent to Composio tools like Apify.

Set up the Composio instance

load_dotenv()

api_key = os.getenv("COMPOSIO_API_KEY")
user_id = os.getenv("USER_ID")

if not api_key:
    raise RuntimeError("COMPOSIO_API_KEY is not set. Create a .env file with COMPOSIO_API_KEY=your_key")

# Initialize Composio
composio = Composio(api_key=api_key, provider=OpenAIAgentsProvider())
What's happening:
  • load_dotenv() loads your .env file so OPENAI_API_KEY and COMPOSIO_API_KEY are available as environment variables.
  • Creating a Composio instance using the API Key and OpenAIAgentsProvider class.

Create a Tool Router session

# Create a Apify Tool Router session
session = composio.create(
    user_id=user_id,
    toolkits=["apify"]
)

mcp_url = session.mcp.url

What is happening:

  • You give the Tool Router the user id and the toolkits you want available. Here, it is only apify.
  • The router checks the user's Apify connection and prepares the MCP endpoint.
  • The returned session.mcp.url is the MCP URL that your agent will use to access Apify.
  • This approach keeps things lightweight and lets the agent request Apify tools only when needed during the conversation.

Configure the agent

# Configure agent with MCP tool
agent = Agent(
    name="Assistant",
    model="gpt-5",
    instructions=(
        "You are a helpful assistant that can access Apify. "
        "Help users perform Apify operations through natural language."
    ),
    tools=[
        HostedMCPTool(
            tool_config={
                "type": "mcp",
                "server_label": "tool_router",
                "server_url": mcp_url,
                "headers": {"x-api-key": api_key},
                "require_approval": "never",
            }
        )
    ],
)
What's happening:
  • We're creating an Agent instance with a name, model (gpt-5), and clear instructions about its purpose.
  • The agent's instructions tell it that it can access Apify and help with queries, inserts, updates, authentication, and fetching database information.
  • The tools array includes a HostedMCPTool that connects to the MCP server URL we created earlier.
  • The headers dict includes the Composio API key for secure authentication with the MCP server.
  • require_approval: 'never' means the agent can execute Apify operations without asking for permission each time, making interactions smoother.

Start chat loop and handle conversation

print("\nComposio Tool Router session created.")

chat_session = SQLiteSession("conversation_openai_toolrouter")

print("\nChat started. Type your requests below.")
print("Commands: 'exit', 'quit', or 'q' to end\n")

async def main():
    try:
        result = await Runner.run(
            agent,
            "What can you help me with?",
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")
    except Exception as e:
        print(f"Error: {e}\n")

    while True:
        user_input = input("You: ").strip()
        if user_input.lower() in {"exit", "quit", "q"}:
            print("Goodbye!")
            break

        result = await Runner.run(
            agent,
            user_input,
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")

asyncio.run(main())
What's happening:
  • The program prints a session URL that you visit to authorize Apify.
  • After authorization, the chat begins.
  • Each message you type is processed by the agent using Runner.run().
  • The responses are printed to the console, and conversations are saved locally using SQLite.
  • Typing exit, quit, or q cleanly ends the chat.

Complete Code

Here's the complete code to get you started with Apify and open-ai-agents-sdk:

import asyncio
import os
from dotenv import load_dotenv

from composio import Composio
from composio_openai_agents import OpenAIAgentsProvider
from agents import Agent, Runner, HostedMCPTool, SQLiteSession

load_dotenv()

api_key = os.getenv("COMPOSIO_API_KEY")
user_id = os.getenv("USER_ID")

if not api_key:
    raise RuntimeError("COMPOSIO_API_KEY is not set. Create a .env file with COMPOSIO_API_KEY=your_key")

# Initialize Composio
composio = Composio(api_key=api_key, provider=OpenAIAgentsProvider())

# Create Tool Router session
session = composio.create(
    user_id=user_id,
    toolkits=["apify"]
)
mcp_url = session.mcp.url

# Configure agent with MCP tool
agent = Agent(
    name="Assistant",
    model="gpt-5",
    instructions=(
        "You are a helpful assistant that can access Apify. "
        "Help users perform Apify operations through natural language."
    ),
    tools=[
        HostedMCPTool(
            tool_config={
                "type": "mcp",
                "server_label": "tool_router",
                "server_url": mcp_url,
                "headers": {"x-api-key": api_key},
                "require_approval": "never",
            }
        )
    ],
)

print("\nComposio Tool Router session created.")

chat_session = SQLiteSession("conversation_openai_toolrouter")

print("\nChat started. Type your requests below.")
print("Commands: 'exit', 'quit', or 'q' to end\n")

async def main():
    try:
        result = await Runner.run(
            agent,
            "What can you help me with?",
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")
    except Exception as e:
        print(f"Error: {e}\n")

    while True:
        user_input = input("You: ").strip()
        if user_input.lower() in {"exit", "quit", "q"}:
            print("Goodbye!")
            break

        result = await Runner.run(
            agent,
            user_input,
            session=chat_session
        )
        print(f"Assistant: {result.final_output}\n")

asyncio.run(main())

Conclusion

This was a starter code for integrating Apify MCP with OpenAI Agents SDK to build a functional AI agent that can interact with Apify.

Key features:

  • Hosted MCP tool integration through Composio's Tool Router
  • SQLite session persistence for conversation history
  • Simple async chat loop for interactive testing
You can extend this by adding more toolkits, implementing custom business logic, or building a web interface around the agent.

How to build Apify MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Apify MCP?

With a standalone Apify MCP server, the agents and LLMs can only access a fixed set of Apify tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Apify and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with OpenAI Agents SDK?

Yes, you can. OpenAI Agents SDK fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Apify tools.

Can I manage the permissions and scopes for Apify while using Tool Router?

Yes, absolutely. You can configure which Apify scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Apify data and credentials are handled as safely as possible.

Used by agents from

Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.