How to integrate Airtable MCP with CrewAI

Framework Integration Gradient
Airtable Logo
CrewAI Logo
divider

Introduction

This guide walks you through connecting Airtable to CrewAI using the Composio tool router. By the end, you'll have a working Airtable agent that can add new contacts from a signup list, create a project tracking table in workspace, delete outdated records from clients table, fetch schema for my marketing base through natural language commands.

This guide will help you understand how to give your CrewAI agent real control over a Airtable account through Composio's Airtable MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get a Composio API key and configure your Airtable connection
  • Set up CrewAI with an MCP enabled agent
  • Create a Tool Router session or standalone MCP server for Airtable
  • Build a conversational loop where your agent can execute Airtable operations

What is CrewAI?

CrewAI is a powerful framework for building multi-agent AI systems. It provides primitives for defining agents with specific roles, creating tasks, and orchestrating workflows through crews.

Key features include:

  • Agent Roles: Define specialized agents with specific goals and backstories
  • Task Management: Create tasks with clear descriptions and expected outputs
  • Crew Orchestration: Combine agents and tasks into collaborative workflows
  • MCP Integration: Connect to external tools through Model Context Protocol

What is the Airtable MCP server, and what's possible with it?

The Airtable MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Airtable account. It provides structured and secure access to your Airtable bases and tables, so your agent can create records, update fields, manage tables, retrieve schemas, and automate project tracking on your behalf.

  • Seamless record creation and management: Easily instruct your agent to add new records, create multiple entries at once, or delete outdated information across any Airtable table.
  • Intuitive table and field customization: Ask your agent to design new tables, add or modify fields, and tailor the structure of your bases for evolving projects and workflows.
  • Efficient schema discovery: Let your agent fetch detailed schema information, including fields and configurations, to power data-driven automation and analysis.
  • Collaborative commenting: Have your agent add or remove comments on specific records, making team collaboration and discussion much smoother from anywhere.
  • Bulk operations for productivity: Enable your agent to perform batch actions like creating or deleting multiple records in one go, saving you time on repetitive data management tasks.

Supported Tools & Triggers

Tools
Create baseCreates a new airtable base with specified tables and fields within a workspace; ensure field options are valid for their type.
Create CommentCreates a new comment on a specific record within an airtable base and table.
Create FieldCreates a new field within a specified table in an airtable base.
Create multiple recordsCreates multiple new records in a specified airtable table.
Create a recordCreates a new record in a specified airtable table; field values must conform to the table's column types.
Create tableCreates a new table within a specified existing airtable base, allowing definition of its name, description, and field structure.
Delete CommentDeletes an existing comment from a specified record in an airtable table.
Delete multiple recordsDeletes up to 10 specified records from a table within an airtable base.
Delete RecordPermanently deletes a specific record from an existing table within an existing airtable base.
Get Base SchemaRetrieves the detailed schema for a specified airtable base, including its tables, fields, field types, and configurations, using the `baseid`.
Get RecordRetrieves a specific record from a table within an airtable base.
Get user informationRetrieves information, such as id and permission scopes, for the currently authenticated airtable user from the `/meta/whoami` endpoint.
List basesRetrieves all airtable bases accessible to the authenticated user, which may include an 'offset' for pagination.
List CommentsRetrieves all comments for a specific record in an airtable table, requiring existing `baseid`, `tableidorname`, and `recordid`.
List recordsRetrieves records from an airtable table, with options for filtering, sorting, pagination, and specifying returned fields.
Update multiple recordsUpdates multiple existing records in a specified airtable table; these updates are not performed atomically.
Update recordModifies specified fields of an existing record in an airtable base and table; the base, table, and record must exist.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Python 3.9 or higher
  • A Composio account and API key
  • A Airtable connection authorized in Composio
  • An OpenAI API key for the CrewAI LLM
  • Basic familiarity with Python

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

bash
pip install composio crewai crewai-tools python-dotenv
What's happening:
  • composio connects your agent to Airtable via MCP
  • crewai provides Agent, Task, Crew, and LLM primitives
  • crewai-tools includes MCP helpers
  • python-dotenv loads environment variables from .env

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
USER_ID=your_user_id_here
OPENAI_API_KEY=your_openai_api_key_here

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates with Composio
  • USER_ID scopes the session to your account
  • OPENAI_API_KEY lets CrewAI use your chosen OpenAI model

Import dependencies

python
from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter  # optional import if you plan to adapt tools
from composio import Composio
from dotenv import load_dotenv
import os
from crewai.mcp import MCPServerHTTP

load_dotenv()
What's happening:
  • CrewAI classes define agents and tasks, and run the workflow
  • MCPServerHTTP connects the agent to an MCP endpoint
  • Composio will give you a short lived Airtable MCP URL

Create a Composio Tool Router session for Airtable

python
composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
session = composio.create(
    user_id=os.getenv("USER_ID"),
    toolkits=["airtable"],
)
url = session.mcp.url
What's happening:
  • You create a Airtable only session through Composio
  • Composio returns an MCP HTTP URL that exposes Airtable tools

Configure the LLM

python
llm = LLM(
    model="gpt-5-mini",
    api_key=os.getenv("OPENAI_API_KEY"),
)
What's happening:
  • CrewAI will call this LLM for planning and responses
  • You can swap in a different model if needed

Attach the MCP server and create the agent

python
toolkit_agent = Agent(
    role="Airtable Assistant",
    goal="Help users interact with Airtable through natural language commands",
    backstory=(
        "You are an expert assistant with access to Airtable tools. "
        "You can perform various Airtable operations on behalf of the user."
    ),
    mcps=[
        MCPServerHTTP(
            url=url,
            streamable=True,
            cache_tools_list=True,
            headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")},
        ),
    ],
    llm=llm,
    verbose=True,
    max_iter=10,
)
What's happening:
  • MCPServerHTTP connects the agent to the Airtable MCP endpoint
  • cache_tools_list saves a tools catalog for faster subsequent runs
  • verbose helps you see what the agent is doing

Add a REPL loop with Task and Crew

python
print("Chat started! Type 'exit' or 'quit' to end.\n")
print("Try asking the agent to perform Airtable operations.\n")

conversation_context = ""

while True:
    user_input = input("You: ").strip()

    if user_input.lower() in ["exit", "quit", "bye"]:
        print("\nGoodbye!")
        break

    if not user_input:
        continue

    conversation_context += f"\nUser: {user_input}\n"
    print("\nAgent is thinking...\n")

    task = Task(
        description=(
            f"Based on the conversation history:\n{conversation_context}\n\n"
            f"Current user request: {user_input}\n\n"
            f"Please help the user with their Airtable related request."
        ),
        expected_output="A helpful response addressing the user's request",
        agent=toolkit_agent,
    )

    crew = Crew(
        agents=[toolkit_agent],
        tasks=[task],
        verbose=False,
    )

    result = crew.kickoff()
    response = str(result)

    conversation_context += f"Agent: {response}\n"
    print(f"Agent: {response}\n")
What's happening:
  • You build a simple chat loop and keep a running context
  • Each user turn becomes a Task handled by the same agent
  • Crew executes the task and returns a response

Run the application

python
if __name__ == "__main__":
    main()
What's happening:
  • Standard Python entry point so you can run python crewai_airtable_agent.py

Complete Code

Here's the complete code to get you started with Airtable and CrewAI:

python
# file: crewai_airtable_agent.py
from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter  # optional
from composio import Composio
from dotenv import load_dotenv
import os
from crewai.mcp import MCPServerHTTP

load_dotenv()

def main():
    # Initialize Composio and create a Airtable session
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
    session = composio.create(
        user_id=os.getenv("USER_ID"),
        toolkits=["airtable"],
    )
    url = session.mcp.url

    # Configure LLM
    llm = LLM(
        model="gpt-5-mini",
        api_key=os.getenv("OPENAI_API_KEY"),
    )

    # Create Airtable assistant agent
    toolkit_agent = Agent(
        role="Airtable Assistant",
        goal="Help users interact with Airtable through natural language commands",
        backstory=(
            "You are an expert assistant with access to Airtable tools. "
            "You can perform various Airtable operations on behalf of the user."
        ),
        mcps=[
            MCPServerHTTP(
                url=url,
                streamable=True,
                cache_tools_list=True,
                headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")},
            ),
        ],
        llm=llm,
        verbose=True,
        max_iter=10,
    )

    print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
    print("Try asking the agent to perform Airtable operations.\n")

    conversation_context = ""

    while True:
        user_input = input("You: ").strip()

        if user_input.lower() in ["exit", "quit", "bye"]:
            print("\nGoodbye!")
            break

        if not user_input:
            continue

        conversation_context += f"\nUser: {user_input}\n"
        print("\nAgent is thinking...\n")

        task = Task(
            description=(
                f"Based on the conversation history:\n{conversation_context}\n\n"
                f"Current user request: {user_input}\n\n"
                f"Please help the user with their Airtable related request."
            ),
            expected_output="A helpful response addressing the user's request",
            agent=toolkit_agent,
        )

        crew = Crew(
            agents=[toolkit_agent],
            tasks=[task],
            verbose=False,
        )

        result = crew.kickoff()
        response = str(result)

        conversation_context += f"Agent: {response}\n"
        print(f"Agent: {response}\n")

if __name__ == "__main__":
    main()

Conclusion

You now have a CrewAI agent connected to Airtable through Composio's Tool Router. The agent can perform Airtable operations through natural language commands. Next steps:
  • Add role-specific instructions to customize agent behavior
  • Plug in more toolkits for multi-app workflows
  • Chain tasks for complex multi-step operations

How to build Airtable MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Airtable MCP?

With a standalone Airtable MCP server, the agents and LLMs can only access a fixed set of Airtable tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Airtable and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with CrewAI?

Yes, you can. CrewAI fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Airtable tools.

Can I manage the permissions and scopes for Airtable while using Tool Router?

Yes, absolutely. You can configure which Airtable scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Airtable data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.