How to integrate Agenty MCP with LangChain

Framework Integration Gradient
Agenty Logo
LangChain Logo
divider

Introduction

This guide walks you through connecting Agenty to LangChain using the Composio tool router. By the end, you'll have a working Agenty agent that can clone my top-performing agent for news sites, list all my running web scraping agents, create a new agent to monitor product prices, delete an outdated agent by its id through natural language commands.

This guide will help you understand how to give your LangChain agent real control over a Agenty account through Composio's Agenty MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get and set up your OpenAI and Composio API keys
  • Connect your Agenty project to Composio
  • Create a Tool Router MCP session for Agenty
  • Initialize an MCP client and retrieve Agenty tools
  • Build a LangChain agent that can interact with Agenty
  • Set up an interactive chat interface for testing

What is LangChain?

LangChain is a framework for developing applications powered by language models. It provides tools and abstractions for building agents that can reason, use tools, and maintain conversation context.

Key features include:

  • Agent Framework: Build agents that can use tools and make decisions
  • MCP Integration: Connect to external services through Model Context Protocol adapters
  • Memory Management: Maintain conversation history across interactions
  • Multi-Provider Support: Works with OpenAI, Anthropic, and other LLM providers

What is the Agenty MCP server, and what's possible with it?

The Agenty MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Agenty account. It provides structured and secure access to your web scraping agents and automation tools, so your agent can perform actions like creating, managing, cloning, and monitoring scraping agents, as well as handling API keys and templates—all on your behalf.

  • Agent creation and configuration: Instantly create new scraping or automation agents, set up their configurations, and optionally auto-start them—all without manual coding.
  • Clone and update agents: Duplicate existing agents to streamline workflows or update agent settings to refine your data extraction processes.
  • Fetch and manage agents: List all active agents in your account, retrieve details for any agent, and organize your entire automation fleet from a single place.
  • Template selection and management: Browse public agent templates or sample agents, making it easy to kickstart new projects or standardize scraping tasks.
  • API key management: Create, download, or delete API keys for secure programmatic access and efficient credential management, keeping your automation environment safe and organized.

Supported Tools & Triggers

Tools
Clone Agent by IDTool to clone an existing agent by its id.
Create AgentTool to create a new agent.
Get Agent TemplatesTool to fetch all public agent templates and sample agents.
Delete Agent by IDTool to delete a single agent by its id.
Fetch all agentsTool to fetch all active agents under an account.
Get Agent by IDTool to fetch details of a specific agent by its id.
Update Agent by IDTool to update an agent's configuration and settings by agent id.
Create API KeyTool to create a new api key.
Delete API key by IDTool to delete an api key by its key id.
Download API keysTool to download all api keys under an account in csv format.
Get all API keysTool to retrieve all api keys under an account.
Get API key by IDTool to get an api key by key id.
Reset API key by IDTool to reset an api key by key id.
Update API key by IDTool to update an api key by its id.
Change API key status by IDTool to enable or disable an api key by its id.
Get all connectionsTool to get all connections.
Create API KeyTool to create a new api key.
Get dashboard reports and usageTool to fetch account reports like pages used by agent, date, and product.
Get agent input by IDTool to get agent input by agent id.
Update Input by Agent IDTool to update agent input by agent id.
Download jobsTool to download all jobs in csv format.
Download job file by IDTool to download output files by job id.
Download Job Result by IDTool to download the agent output result by job id.
Fetch all jobsTool to fetch all jobs under an account.
Get Job by IDTool to fetch details of a specific job by its id.
Get Job Logs by IDTool to fetch logs for a given job by its id.
List job files by IDTool to list output files by job id.
Start Agent JobTool to start a new agent job.
Stop Job by IDTool to stop a running job by job id.
Clear List RowsTool to clear all rows in a list by its id.
Create ListTool to create a new list.
Delete List by IDTool to delete a specific list by its id.
Download listsTool to download all lists in csv format.
Get all listsTool to retrieve all lists under an account.
Fetch List Rows by IDTool to fetch all rows in a specified list.
Update List by IDTool to update a list's name or description by list id.
Upload CSV file to ListTool to upload a csv file to a list.
Add Agents to ProjectTool to add agent(s) to a project.
Create ProjectTool to create a new project.
Get all projectsTool to retrieve all projects under an account.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting this tutorial, make sure you have:
  • Python 3.10 or higher installed on your system
  • A Composio account with an API key
  • An OpenAI API key
  • Basic familiarity with Python and async programming

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

pip install composio-langchain langchain-mcp-adapters langchain python-dotenv

Install the required packages for LangChain with MCP support.

What's happening:

  • composio-langchain provides Composio integration for LangChain
  • langchain-mcp-adapters enables MCP client connections
  • langchain is the core agent framework
  • python-dotenv loads environment variables

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
COMPOSIO_USER_ID=your_composio_user_id_here
OPENAI_API_KEY=your_openai_api_key_here

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates your requests to Composio's API
  • COMPOSIO_USER_ID identifies the user for session management
  • OPENAI_API_KEY enables access to OpenAI's language models

Import dependencies

from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain.agents import create_agent
from dotenv import load_dotenv
from composio import Composio
import asyncio
import os

load_dotenv()
What's happening:
  • We're importing LangChain's MCP adapter and Composio SDK
  • The dotenv import loads environment variables from your .env file
  • This setup prepares the foundation for connecting LangChain with Agenty functionality through MCP

Initialize Composio client

async def main():
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))

    if not os.getenv("COMPOSIO_API_KEY"):
        raise ValueError("COMPOSIO_API_KEY is not set")
    if not os.getenv("COMPOSIO_USER_ID"):
        raise ValueError("COMPOSIO_USER_ID is not set")
What's happening:
  • We're loading the COMPOSIO_API_KEY from environment variables and validating it exists
  • Creating a Composio instance that will manage our connection to Agenty tools
  • Validating that COMPOSIO_USER_ID is also set before proceeding

Create a Tool Router session

# Create Tool Router session for Agenty
session = composio.create(
    user_id=os.getenv("COMPOSIO_USER_ID"),
    toolkits=['agenty']
)

url = session.mcp.url
What's happening:
  • We're creating a Tool Router session that gives your agent access to Agenty tools
  • The create method takes the user ID and specifies which toolkits should be available
  • The returned session.mcp.url is the MCP server URL that your agent will use
  • This approach allows the agent to dynamically load and use Agenty tools as needed

Configure the agent with the MCP URL

client = MultiServerMCPClient({
    "agenty-agent": {
        "transport": "streamable_http",
        "url": session.mcp.url,
        "headers": {
            "x-api-key": os.getenv("COMPOSIO_API_KEY")
        }
    }
})

tools = await client.get_tools()

agent = create_agent("gpt-5", tools)
What's happening:
  • We're creating a MultiServerMCPClient that connects to our Agenty MCP server via HTTP
  • The client is configured with a name and the URL from our Tool Router session
  • get_tools() retrieves all available Agenty tools that the agent can use
  • We're creating a LangChain agent using the GPT-5 model

Set up interactive chat interface

conversation_history = []

print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
print("Ask any Agenty related question or task to the agent.\n")

while True:
    user_input = input("You: ").strip()

    if user_input.lower() in ['exit', 'quit', 'bye']:
        print("\nGoodbye!")
        break

    if not user_input:
        continue

    conversation_history.append({"role": "user", "content": user_input})
    print("\nAgent is thinking...\n")

    response = await agent.ainvoke({"messages": conversation_history})
    conversation_history = response['messages']
    final_response = response['messages'][-1].content
    print(f"Agent: {final_response}\n")
What's happening:
  • We initialize an empty conversation_history list to maintain context across interactions
  • A while loop continuously accepts user input from the command line
  • When a user types a message, it's added to the conversation history and sent to the agent
  • The agent processes the request using the ainvoke() method with the full conversation history
  • Users can type 'exit', 'quit', or 'bye' to end the chat session gracefully

Run the application

if __name__ == "__main__":
    asyncio.run(main())
What's happening:
  • We call the main() function using asyncio.run() to start the application

Complete Code

Here's the complete code to get you started with Agenty and LangChain:

from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain.agents import create_agent
from dotenv import load_dotenv
from composio import Composio
import asyncio
import os

load_dotenv()

async def main():
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
    
    if not os.getenv("COMPOSIO_API_KEY"):
        raise ValueError("COMPOSIO_API_KEY is not set")
    if not os.getenv("COMPOSIO_USER_ID"):
        raise ValueError("COMPOSIO_USER_ID is not set")
    
    session = composio.create(
        user_id=os.getenv("COMPOSIO_USER_ID"),
        toolkits=['agenty']
    )

    url = session.mcp.url
    
    client = MultiServerMCPClient({
        "agenty-agent": {
            "transport": "streamable_http",
            "url": url,
            "headers": {
                "x-api-key": os.getenv("COMPOSIO_API_KEY")
            }
        }
    })
    
    tools = await client.get_tools()
  
    agent = create_agent("gpt-5", tools)
    
    conversation_history = []
    
    print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
    print("Ask any Agenty related question or task to the agent.\n")
    
    while True:
        user_input = input("You: ").strip()
        
        if user_input.lower() in ['exit', 'quit', 'bye']:
            print("\nGoodbye!")
            break
        
        if not user_input:
            continue
        
        conversation_history.append({"role": "user", "content": user_input})
        print("\nAgent is thinking...\n")
        
        response = await agent.ainvoke({"messages": conversation_history})
        conversation_history = response['messages']
        final_response = response['messages'][-1].content
        print(f"Agent: {final_response}\n")

if __name__ == "__main__":
    asyncio.run(main())

Conclusion

You've successfully built a LangChain agent that can interact with Agenty through Composio's Tool Router.

Key features of this implementation:

  • Dynamic tool loading through Composio's Tool Router
  • Conversation history maintenance for context-aware responses
  • Async Python provides clean, efficient execution of agent workflows
You can extend this further by adding error handling, implementing specific business logic, or integrating additional Composio toolkits to create multi-app workflows.

How to build Agenty MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Agenty MCP?

With a standalone Agenty MCP server, the agents and LLMs can only access a fixed set of Agenty tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Agenty and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with LangChain?

Yes, you can. LangChain fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Agenty tools.

Can I manage the permissions and scopes for Agenty while using Tool Router?

Yes, absolutely. You can configure which Agenty scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Agenty data and credentials are handled as safely as possible.

Used by agents from

Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.